НАУЧНО – ПРОИЗВОДСТВЕННОЕ ПРЕДПРИЯТИЕ « АВТОМАТИКА »

ПРЕОБРАЗОВАТЕЛЬ ДАВЛЕНИЯ

ПД – 1К

Руководство по эксплуатации

ПД – 1К.01 РЭ

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
1. НАЗНАЧЕНИЕ	3
2. ТЕХНИЧЕСКИЕ ДАННЫЕ	
3. СОСТАВ ИЗДЕЛИЯ	5
4. УСТРОЙСТВО И ПРИНЦИП ДЕЙСТВИЯ	
5. УКАЗАНИЯ МЕР БЕЗОПАСНОСТИ	6
6. ПОДГОТОВКА К РАБОТЕ И ПОРЯДОК РАБОТЫ	6
7. ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ	7
8. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	7
9. МАРКИРОВКА, УПАКОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ	7
10. ГАРАНТИИ ИЗГОТОВИТЕЛЯ	8
11. СВЕДЕНИЯ О РЕКЛАМАЦИЯХ	9
ПРИЛОЖЕНИЕ 1. Методика калибровки	10
ПРИЛОЖЕНИЕ 2. Схема внешних соединений при проведении калибровки	. 12
ПРИЛОЖЕНИЕ 3. Габаритные и монтажные размеры	13
ПРИЛОЖЕНИЕ 4. Расположение органов настройки	16

ВВЕДЕНИЕ

Настоящее руководство по эксплуатации предназначено для изучения устройства и обеспечения правильной эксплуатации преобразователей давления типа ПД-1К (далее – преобразователи).

Описываются назначение, принцип действия, устройство, приводятся технические данные, даются сведения о порядке работы с преобразователем и проверки его технического состояния.

Преобразователи ПД-1К не предназначены для применения в сферах распространения государственного метрологического контроля и надзора.

Преобразователи выпускаются по техническим условиям ТУ 4212-064-10474265-04.

1. НАЗНАЧЕНИЕ

1.1. Преобразователи ПД-1К предназначены для преобразования давления неагрессивных жидкостей, паров и газов, а также разрежения (вакуума) в аналоговый сигнал постоянного тока.

Преобразователи имеет следующие модели:

 Π Д-1К.И, Π Д-1К.МИ, Π Д-1К.Н (напоромер) — для преобразования избыточного давления;

 Π Д-1К.В, Π Д-1К.МВ, Π Д-1К.Т (тягомер) — для преобразования разрежения (вакуума);

ПД-1К.ТН (тягонапоромер) – для преобразования избыточного давления и разрежения (вакуума).

- 1.2. По устойчивости к климатическим воздействиям преобразователь имеет исполнение УХЛ категории размещения 3.1, но при температуре от минус $10\,^{\circ}$ С до $50\,^{\circ}$ С или от минус $40\,^{\circ}$ С до $+50\,^{\circ}$ С (в зависимости от заказа) по ГОСТ 15150-69.
 - 1.3. Условия эксплуатации:
 - температура окружающего воздуха (-10...+50) °C или (-40...+50) °C;
 - относительная влажность окружающего воздуха до 95 %;
 - температура рабочей среды (-25...+85) °C;
 - атмосферное давление (84... 106,7) кПа.
- 1.4. По защищенности от воздействия пыли и воды преобразователь имеет исполнение IP54 по ГОСТ 14254-96.
- 1.5. Преобразователи могут устанавливаться во взрывоопасных зонах согласно главе 7.3 (табл. 7.3. 11) «Правила устройств электроустановок» (ПУЭ, 1998).

2. ТЕХНИЧЕСКИЕ ДАННЫЕ

- 2.1. Верхний предел измерения:
- 1) избыточного давления, кПа:
- ПД-1К.И, ПД-1К.МИ 4; 10; 25; 40; 60; 100; 160; 250; 400; 600; 1000; 1600; 2500; 4000;

- ПД-1К.Н

0,25; 1,0; 2,5; 5,0; 7,5.

2) разрежения (вакуума), кПа:

- ПД-1К.В, ПД-1К.МВ

- ПД-1К.Т

3) избыточного давления и разрежения (вакуума), кПа:

$$\pm 0,125; \pm 0,5; \pm 1,0; \pm 2,5; \pm 4,0.$$

- 2.2. Максимальное входное давление или разрежение (вакуум) не должны превышать 125 % от верхнего предела измерения (см. п. 3.1).
- 2.3. Предел допускаемой основной погрешности преобразователей, выраженной в процентах от диапазона изменения выходного сигнала не должен превышать:

- для ПД-1К.И, ПД-1К.МИ, ПД-1К.В, ПД-1К.МВ

$$\pm 0.5\%$$
; $\pm 1.0\%$;

- для ПД-1К.Н, ПД-1К.Т, ПД-1К.ТН

$$\pm 1,5 \%$$
; $\pm 2,5 \%$.

- 2.4. Дополнительная погрешность, вызванная изменением температуры окружающего воздуха в пределах, указанных в п. 1.3, на каждые 10 °C, не превышает по выходному сигналу:
 - для моделей ПД-1К.И, ПД-1К.В; ПД-1К.МИ, ПД-1К.МВ

 $\pm 0.5 \%;$ $\pm 1.0 \%.$

- для моделей ПД-1К.Н, ПД-1К.Т, ПД-1К.ТН

- 2.5. Выходной аналоговый сигнал постоянного тока:
 - (0...5) мА для моделей ПД-1К.И, ПД-1К.В; ПД-1К.Н, ПД-1К.Т, ПД-1К.ТН;
 - (4...20) мА для всех моделей.
- 2.6. Схема подключения к внешним устройствам:
 - для ПД-1К. с выходным сигналом (0...5) мА трехпроводная;
 - для ПД-1К. с выходным сигналом (4...20) мА двухпроводная.
- 2.7. Напряжение питания постоянного тока (12...30) В.

Максимальное сопротивление нагрузки:

- для ПД-1К. с выходным сигналом (0...5) мА 2,0 кОм;
- для ПД-1К. с выходным сигналом (4...20) мА зависит от напряжения питания и определяется по формуле:

$$R_{\scriptscriptstyle HMAKC} = \frac{U_{\scriptscriptstyle num} - 11}{20} , \text{ кOм,}$$

но не более 0,5 кОм.

- 2.8. Потребляемая мощность не более 1,0 ВА.
- 2.9. Вес ПД-1К.МИ и МД-1МВ не более 0,2 кг, для остальных моделей не более 1,0 кг.
- 2.10. Преобразователь рассчитан на круглосуточную работу. Время готовности к работе после включения не более 30 мин.
 - 2.11. Габаритные и монтажные размеры указаны в прил. 3.

- 2.12. Исполнение по устойчивости к механическим воздействиям соответствует группе V2 по ГОСТ 12997.
- 2.13. Преобразователь относится к ремонтируемым и восстанавливаемым изделиям.
 - 2.14. Средняя наработка на отказ не менее 100000 часов.
 - 2.15. Средний срок службы не менее 10 лет.

Пример оформления заказа: : "Преобразователь избыточного давления ПД-1К.И, 100 кПа, выходной сигнал (4...20) мА, температура (-10...+50) °C, основная погрешность ± 1 %.

3. СОСТАВ ИЗДЕЛИЯ

В комплект поставки входят:

- преобразователь давления ПД-1К 1шт;
- руководство по эксплуатации 1экз. (допускается прилагать 1экз. на партию преобразователей 10 шт., поставляемых в один адрес);
- паспорт 1 экз.

4. УСТРОЙСТВО И ПРИНЦИП ДЕЙСТВИЯ

- 4.1. Принцип действия ПД-1К основан на усилении сигнала от тензорезистивного датчика, осуществляющего преобразование подаваемого на него давления (разрежения) в электрический сигнал постоянного тока.
- 4.2. Преобразователи ПД-1К.МИ, ПД-1К.МВ конструктивно состоят из корпуса с входным штуцером и герметичным вводом и электронного блока, установленного внутри корпуса.

Входной штуцер выполнен из нержавеющей стали 12Х18Н10Т.

Корпус изготовлен из алюминиевого сплава и имеет цилиндрическую форму. С одной стороны в корпус заворачивается входной штуцер, а с другой — герметичный ввод для подключения соединительного кабеля.

Электронный блок представляет собой печатную плату с электронными элементами. На печатной плате установлены построечные резисторы и разъём для подключения кабеля.

- 4.3. Преобразователи остальных моделей конструктивно состоят из алюминиевого корпуса прямоугольной формы с входным штуцером из нержавеющей стали и электронной платы.
- 4.4. Датчик давления, в зависимости от верхнего предела измерения, устанавливается либо в входном штуцере и заливается компаундом, либо устанавливается на печатной плате (для малых давлений). На печатной плате, кроме того, расположены электронные элементы, органы регулирования и контактные стойки для подключения кабеля.
- 4.5. Степень защиты от проникновения воды и пыли (IP 54) обеспечивается уплотнительными прокладками между корпусом и входным штуцером, корпусом и герметичным вводом (для ПД-1К.М), уплотнительными прокладками между корпу-

сом и крышками и резиновой втулкой с проходной гайкой для ввода кабеля (для ПД-1К остальных моделей).

5. УКАЗАНИЯ МЕР БЕЗОПАСНОСТИ

- 5.1. По способу защиты человека от поражения электрическим током преобразователь соответствует классу 3 по ГОСТ 12.2.007.0 –75.
- 5.2. К монтажу и обслуживанию допускаются лица, знакомые с общими правилами по технике безопасности при работе с электроустановками до 1000 В.
- 5.3. Не допускается эксплуатация преобразователя в системах, рабочее давление в которых может превышать соответствующие значения (см. п. 3.2).
- 5.4. Подключение входных и выходных сигналов производить согласно маркировке при отключенном напряжении питания.
- 5.5. Присоединение и отсоединение преобразователя от магистрали, подводящей измеряемую среду, должно производиться после закрытия вентиля на линии перед преобразователем и сброса давления (вакуума) до атмосферного давления.

6. ПОДГОТОВКА К РАБОТЕ И ПОРЯДОК РАБОТЫ

6.1. Внешний осмотр.

После распаковки выявить следующие соответствия:

- преобразователь должен быть укомплектован в соответствии с паспортом;
- заводской номер должен соответствовать указанному в паспорте;
- преобразователь не должен иметь механических повреждений.
- 6.2. Порядок установки.
- 6.2.1. Преобразователь монтируется в произвольном положении.

При выборе места установки необходимо учитывать следующее:

- место установки преобразователя должно обеспечивать удобные условия для обслуживания и демонтажа;
- температура и относительная влажность окружающего воздуха должны соответствовать значениям, указанным в п. 2.3.
- 6.2.2. Преобразователь завернуть ключом к магистрали с усилием, достаточным для требуемого уплотнения.
 - 6.2.3. Для преобразователей модели ПД-1К.М:

Ослабить накидную гайку на герметичном вводе. Удерживая ключом входной штуцер, отвернуть корпус преобразователя. Пропустить соединительный кабель через герметичный ввод и подключить его к выходному разъёму преобразователя согласно маркировке. Привернуть корпус преобразователя к входному штуцеру. Затянуть накидную гайку на герметичном вводе, контролируя качество уплотнения.

6.2.4. Для преобразователей остальных моделей:

Снять крышку с надписью «IP54» корпуса преобразователя, расположив его таким образом, чтобы проходная гайка находилась справа. Пропустить соединитель-

ный кабель через резиновую втулку, зажать проходной гайкой и подключить его к контактным стойкам согласно маркировке.

- 6.3. Включение преобразователя.
- 6.3.1. Собрать схему внешних соединений (см. прил. 2) и прогреть преобразователь в течение 30 минут.
 - 6.3.2. Подать давление (разрежение) в магистраль.

7. ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ

Неисправности	Вероятная причина	Способ устранения
	Неправильное подклю-	Изменить полярность пи-
Отсутствует выходной сигнал	чение	тающего напряжения
на изменение лавления	Неисправен датчик дав-	Заменить датчик давле-
	ления	ния
	Неисправна микросхема	Заменить микросхему

8. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 8.1. Техническое обслуживание преобразователя заключается в регулировке выходного сигнала, если основная погрешность преобразователя не соответствует заданным значениям (см. п.2.3).
 - 8.2. Регулировку выходного сигнала осуществлять следующим образом:
 - 8.2.1. Для всех моделей, кроме ПД-1К.Т и ПД-1К.ТН:
 - собрать схему (см. прил. 2);
- установить на входе нулевое давление и вращением винта резистора установки минимального тока, добиться значения выходного тока равного 4 мА (0 мА);
- установить на входе давление (разрежение), равное верхнему пределу измерения преобразователя. Вращением винта резистора установки максимального тока, добиться значения выходного тока равного 20 мА (5мА);
- проделать указанные действия несколько раз с целью достижения минимальных отклонений выходного тока в конечных точках диапазона.
- 8.2.2. Для моделей ПД-1К.Т (тягомер) и ПД-1К.ТН (тягонапоромер) на вход подается не вакуум, а избыточное давление, но в другую камеру датчика давления (плюсовую). Для этого необходимо подключить трубку, соединяющую входной штуцер с датчиком давления, к плюсовому штуцеру датчика давления (см. прил.4).

Остальные действия проводятся так же, как указано в п. 8.2.1.

8.2.3. Восстановить первоначальную схему подключения датчика давления.

9. МАРКИРОВКА, УПАКОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

- 9.1. На наклейке, размещённой на корпусе преобразователя указаны:
 - предприятие-изготовитель;
 - условное обозначение;

- входной сигнал;
- выходной сигнал;
- порядковый номер;
- год выпуска.
- 9.2. На наклейках, размещённых около регулировочных резисторов и выходного разъёма, указано их назначение.
- 9.3. Преобразователь и документация помещаются в чехол из полиэтиленовой пленки и укладываются в картонные коробки.
- 9.4. Преобразователи транспортируются всеми видами закрытого транспорта, в том числе воздушным, в отапливаемых герметизированных отсеках в соответствии с правилами перевозки грузов, действующими на данном виде транспорта.
- 9.5. Транспортирование преобразователей осуществляется в деревянных ящиках или картонных коробках, допускается транспортирование преобразователей в контейнерах.
- 9.6. Способ укладки преобразователей в ящики должен исключать их перемещение во время транспортирования.

Во время погрузочно-разгрузочных работ и транспортирования, ящики не должны подвергаться резким ударам и воздействию атмосферных осадков.

- 9.7. Срок пребывания преобразователей в соответствующих условиях транспортирования не более 6 месяцев.
- 9.8. Преобразователи должны храниться в отапливаемых помещениях с температурой (5 ...40) °С и относительной влажностью не более 80 %.

Воздух помещений не должен содержать пыли и примесей агрессивных паров и газов, вызывающих коррозию деталей преобразователей.

Хранение преобразователей в упаковке должно соответствовать условиям 3 по ГОСТ 15150.

10. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

- 10.1. Изготовитель гарантирует соответствие преобразователя требованиям технических условий при соблюдении потребителем условий эксплуатации, транспортирования и хранения, установленных настоящим РЭ.
- 10.2. Гарантийный срок эксплуатации устанавливается 18 месяцев со дня ввода в эксплуатацию, но не более 24 месяцев со дня отгрузки потребителю.
- 10.3. В случае обнаружения потребителем дефектов при условии соблюдения им правил эксплуатации, хранения и транспортирования в течение гарантийного срока, предприятие-изготовитель безвозмездно ремонтирует или заменяет преобразователь.

11. СВЕДЕНИЯ О РЕКЛАМАЦИЯХ

При отказе в работе или неисправности преобразователя по вине изготовителя, неисправный преобразователь с указанием признаков неисправностей и соответствующим актом, направляется в адрес предприятия-изготовителя:

Россия, 600016, г. Владимир, ул. Б. Нижегородская, д. 77, ЗАО «НПП «Автоматика». Тел.: (0922) 27-62-90, факс: (0922) 21-57-42

E-mail: market@automatica-vl.ru

Все предъявленные рекламации регистрируются.

МЕТОДИКА КАЛИБРОВКИ

1. Периодичность калибровки

Преобразователи подлежат первичной и периодической калибровке, а также калибровке после ремонта в соответствии с методикой, изложенной в настоящем разделе.

Межкалибровочный интервал – 1 год.

2. Операции калибровки

При проведении калибровки выполняются следующие операции:

- 1. Внешний осмотр (см. п. 6.1).
- 2. Определение основной погрешности (см. п. 6.2).
- 3. Оформление результатов калибровки (см. п. 6.3).

3. Средства калибровки

Перечень оборудования и контрольно-измерительных приборов приведены в таблице:

Наименование	Основные характеристики	Рекомендуемое оборудование
Преобразователь давления измертельный	Диапазон измерения от 0 до 250 кПа, класс точности 0,06	ипд
Мановакууметр гру- зопоршневой	Диапазон измерения избыточного давления от 0 до 250 кПа, вакууметрического давления - от 0 до -100 кПа, класс точности 0,05	МВП-2,5
Задатчик избыточного давления	Диапазон задания давления от 0 до 16 кПа, класс точности 0,05	«Воздух-1600»
Задатчик вакуумметрического давления	Диапазон задания разрежения от -0,8 до -40 кПа, класс точности 0,05	«Воздух-0,4В»
Манометр грузо-поршневой	Диапазон измерения от 100 до 6000 кПа, класс точности 0,05	МП-60
Вольтметр	Основная погрешность измерения постоянного напряжения в диапазоне от 0 до 2 В не более ±0,03 %	B7-34A
Катушка сопротивления	Сопротивление 100 Ом, класс точности 0,01	P 331
Источник питания постоянного тока	Номинальное значение выходного на- пряжения 24 В	Б5-45
Термометр ртутный стеклянный	Диапазон измерения от 0 °C до +50 °C, цена деления не более 0,5 °C	ТЛ-2

Примечание: допускается использование других средств измерения с метрологическими характеристиками не хуже приведённых.

4. Требования безопасности

Меры безопасности при работе с преобразователем указаны в п. 5 настоящего РЭ.

5. Условия проведения калибровки

При проведении калибровки необходимо соблюдать следующие условия:

- температура окружающего воздуха, °C 20 ± 2 ; - относительная влажность воздуха, % 30...80;
- атмосферное давление, кПа
 84...106,7;
- рабочее положение в пространстве вертикальное;
- время прогрева, мин, не менее 30;
- отсутствие вибрации, тряски, ударов и магнитных полей, влияющих на работу преобразователя.

6. Проведение калибровки

6.1. Внешний осмотр

При внешнем осмотре устанавливается отсутствие механических повреждений, правильность маркировки. При наличии дефектов определяется возможность дальнейшего применения преобразователей.

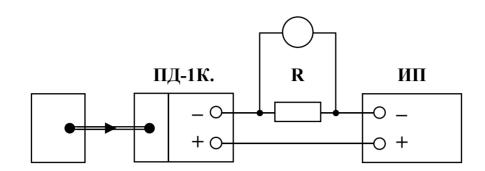
6.2. Определение основной погрешности

- 6.2.1. Собрать схему (см. прил. 2).
- 6.2.2. Диапазон измерения разбивается на шесть равномерно распределённых контрольных точек (0, 20, 40, 60, 80, 100) %.
- 6.2.3. Последовательно задавая с помощью задатчика давления (вакуума) значения входного сигнала, зафиксировать значения выходного тока преобразователя.
- 6.2.4. Рассчитать погрешность для каждой контрольной точки:

$$Y = \frac{I_{\text{изм}} - I_{\text{pacy}}}{I_{\text{д}}} \cdot 100 \%,$$

где $I_{\text{изм}}$ – измеренное значение выходного тока, мА;

 $I_{pacч}$ – расчётное значение выходного тока, мА;

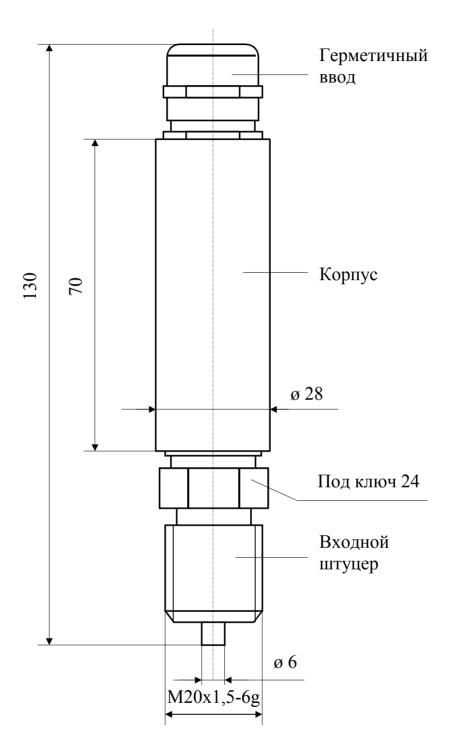

 I_{π} – диапазон изменения выходного тока, мА.

- 6.2.5. Основную погрешность необходимо определять при повышении и снижении давления (разрежения).
- 6.2.6. Наибольшее значение погрешности не должно превышать указанные значения (см.п.2.3 РЭ). Если основная погрешность по выходному току превышает указанные значения, то необходимо произвести регулировку преобразователя (см.п.9 РЭ).

6.3. Оформление результатов калибровки

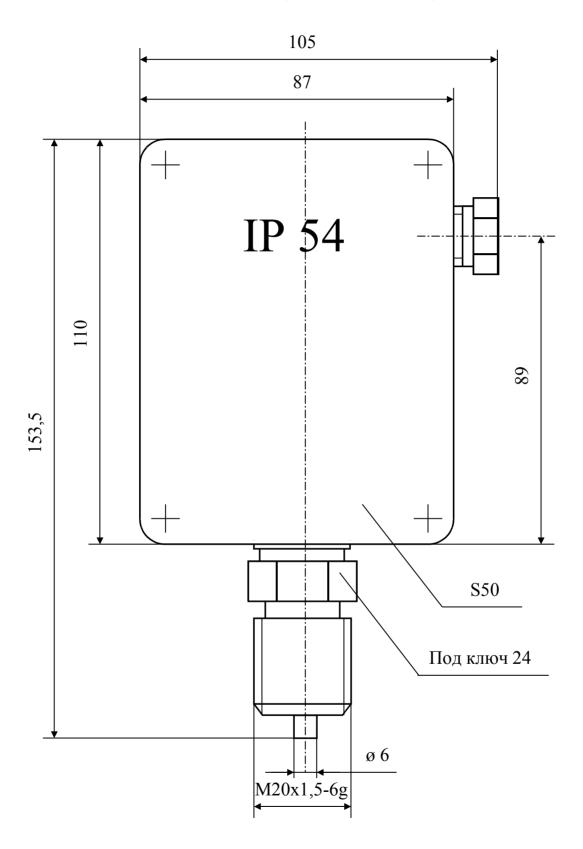
- 6.3.1. При выпуске из производства, при положительных результатах калибровки, наносят оттиск калибровочного клейма в паспорте преобразователя.
- 6.3.2. При проведении периодических и внеочередных калибровок результаты калибровки оформляют выдачей сертификата о калибровке в соответствии с ПР 50.2.016.

СХЕМА ВНЕШНИХ СОЕДИНЕНИЙ ПРИ ПРОВЕДЕНИИ КАЛИБРОВКИ

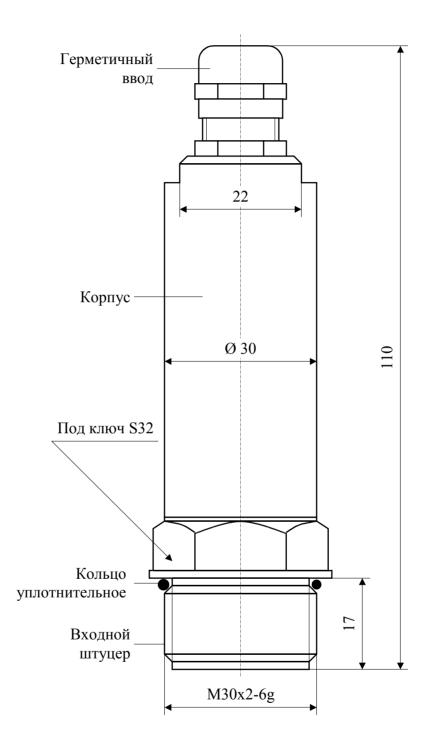

Е – задатчик давления (разрежения);

R – катушка сопротивления;

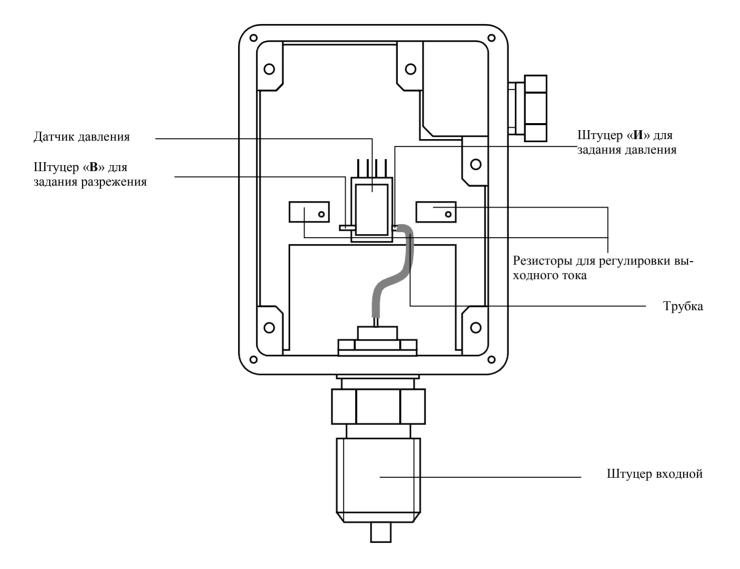
V – вольтметр постоянного тока;


ИП – источник питания постоянного тока

ГАБАРИТНЫЕ И МОНТАЖНЫЕ РАЗМЕРЫ


Преобразователи типа ПД-1К.МИ1; ПД-1К.МВ1

ГАБАРИТНЫЕ И МОНТАЖНЫЕ РАЗМЕРЫ


Преобразователи типа ПД-1К.И; ПД-1К.В; ПД-1К.Н; ПД-1К.Т; ПД-1К.ТН.

ГАБАРИТНЫЕ И МОНТАЖНЫЕ РАЗМЕРЫ

Преобразователи типа ПД-1К.МИЗ; ПД-1К.МВЗ

ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ОРГАНОВ НАСТРОЙКИ

Преобразователи типа ПД-1К.Т, ПД-1К.Н, ПД-1К.ТН.