МПР51-Щ4

Измеритель-регулятор температуры и влажности

109456, Москва, 1-й Вешняковский пр., д.2 тел.: (095) 174-82-82, 171-09-21

> Р.№ 212 Зак. № 511

паспорт и руководство по эксплуатации

Содержание

1.	Назначение	3
	Технические характеристики и условия эксплуатации	
3.	Устройство и работа прибора	6
	3.1. Структурная схема прибора	6
	3.2.Блоки структурной схемы прибора	7
	3.2.1. Входные устройства	7
	3.2.2. Регуляторы	. 10
	3.2.3. Компараторы	. 16
	3.2.4. Транзисторные ключи	. 21
	3.2.5. Выходные реле	. 21
	3.2.6. Задатчик программ управления	. 22
	3.2.7. Устройство связи с компьютером	. 25
	3.3. Конструкция прибора	. 26
	3.3.1. Устройство прибора	. 26
	3.3.2. Индикация и управление	. 26
4.	Программирование прибора	. 28
	4.1. Режимы работы прибора	. 28
	4.2. Режим программирования	. 28
5.	Меры безопасности	. 37
6.	Подготовка прибора к работе	. 38
	6.1. Общие указания	. 38
	6.2. Составление таблиц для программирования	. 38
	6.3. Составление программы технолога	. 39
7.	Монтаж прибора на объекте	. 42
	7.1. Монтаж прибора	. 42
	7.2. Монтаж внешних связей	. 42
	7.2.1. Общие требования	. 42
	7.2.2. Указания по монтажу	. 42
	7.2.3. Подключение прибора	. 43
8.	Работа с прибором	. 44
	8.1. Включение прибора	. 44
	8.2. Выбор программы (шага) для исполнения	. 44
	8.3. Пуск останов прибора	. 45
	8.4. Просмотр значений параметров	. 45
	8.5. Запись значений параметров	. 45
	8.6. Индикация аварийных ситуаций	. 46

Содержание

8.7	. Настройка ПИД-параметров регулятора47
8.8	. Код доступа в уровень программирования47
. Tex	ническое обслуживание48
0. Ma	аркировка и упаковка49
1. Tp	ранспортирование и хранение50
Трило	жения
A.	Габаритный чертеж51
Б.	Схемы подключения прибора52
В.	Соединение датчиков температуры с прибором
	по двухпроводной схеме
Γ.	Калибровка входов датчиков температуры
	и входов датчиков положения54
Д.	Программируемые параметры56
E.	Устройство «влажного» термометра61
Ж.	Пример коррекции показаний температурного датчика64
3.	Примеры программирования прибора МПР51-Щ466
И.	Настройка ПИД-регулятора85
Пис	от пегистрации изменений 88

Назначение

Настоящее «Руководство по эксплуатации» предназначено для ознакомления обслуживающего персонала с устройством, принципом действия, конструкцией, эксплуатацией и порядком технического обслуживания измерителя-регулятора температуры и влажности МПР51 в корпусе Щ4 (прил. А) (в дальнейшем по тексту именуемых «прибор»). Схемы подключения прибора приведены в прил. Б.

Прибор имеет две модификации:

- МПР51-Щ4.01 для работы с термопреобразователями сопротивления 50 Ом;
- МПР51-Щ4.03 для работы с термопреобразователями сопротивления 100 Ом.

Программируемый измеритель-регулятор типа МПР51-Щ4 предназначен для управления многоступенчатыми температурно-влажностными режимами технологических процессов при производстве мясных и колбасных изделий, в хлебопекарной промышленности, в инкубаторах, при сушке макарон, изготовлении железобетонных конструкций, сушке древесины, в климатических камерах и пр. по заданной пользователем программе.

МПР51-Щ4 позволяет:

- измерять температуру при помощи термопреобразователей сопротивления, подключенных ко входам T_{сvx}, T_{прод};
- определять текущее положение задвижек при наличии у них резистивных датчиков положения;
- измерять относительную влажность воздуха при помощи датчика психрометрического типа;
- регулировать температуру по двум независимым каналам;
- задавать программу регулирования с защитой ее от несанкционированного доступа;
- сигнализировать об обрыве или коротком замыкании в линии «прибор датчик».
- регистрировать контролируемые параметры на IBM-совместимом компьютере (при помощи адаптера интерфейса AC2 OBEH).

Прибор выпускается согласно ТУ 3434-001-46526536-03 и имеет сертификат соответствия № 03.09.0100.

Сертификат об утверждении типа средств измерений RU.C.32.054.A № 20143.

Технические характеристики и условия эксплуатации

2.1. Основные технические характеристики прибора приведены в табл. 1.

Таблица 1

Технические характеристики прибора МПР51-Щ4

Характеристика	Значение
Напряжение питания	150245 В переменного тока частотой 4763 Гц 210300 В постоянного тока
Потребляемая мощность, не более	12 Вт
Каналы измерения температуры	
Количество каналов	3
Диапазон измерения при использовании: – датчиков ТСМ – датчиков ТСП	-50+200 °C -80+750 °C
Разрешающая способность	0,1 °C
Предел основной приведенной погрешности	0,5 %
Каналы контроля положения задвижек	
Количество каналов	2
Диапазон контроля	0100 %
Разрешающая способность	1 %
При измерении относительной влажности датчиком псих	рометрического типа
Диапазон температур контролируемых «сухим» датчиком	+10+95 °C
Диапазон измерения	199 %
Разрешающая способность	1 %
Предел основной приведенной погрешности - при температурах «сухого» датчика +10+49,9 °C, не более - при температурах «сухого» датчика +50+95 °C, не более	5 % 4 %
Период измерения входных величин, не более	6,5 c
Каналы регулирования	,
Количество каналов регулирования	2
Количество компараторов	04
Количество выходных реле	5
Количество выходных транзисторных ключей	8

Технические характеристики и условия эксплуатации

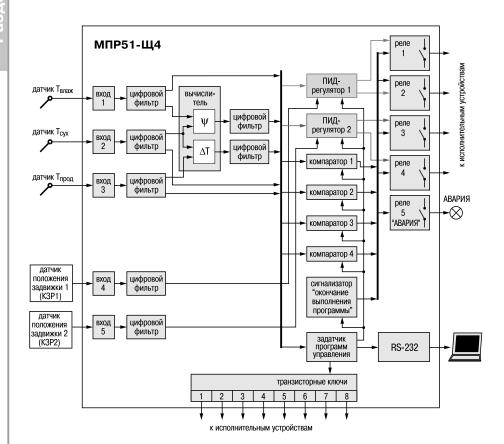
Период следования управляющих импульсов на выходе регулятора	1120 c
Максимально допустимый ток нагрузки устройств управления:	
– электромагнитного реле (при 220 B, cos φ≤0,4; или = 30 B)	4 A
– транзисторного ключа (при постоянном напряжении = 35 B)	200 мА
Интерфейс связи с ЭВМ (через адаптер сети АС2)	RS-232
Длина линии связи прибора с АС2, не более	1000 м
Степень защиты со стороны лицевой панели	IP54
Габаритные размеры корпуса прибора	96×96×145 мм
Масса прибора, не более	1,0 кг
Средний срок службы прибора	8 лет

Примечание. Пределы основных приведенных погрешностей измерения указаны без учета погрешностей датчиков.

При работе с датчиками погрешность канала измерения суммируется с погрешностью самого датчика.

2.2. Условия эксплуатации прибора приведены в табл. 2

Таблица 2


Условия эксплуатации

Характеристика	Значение
Допустимая температура воздуха, окружающего прибор	+1+50 °C
Атмосферное давление	86107 кПа
Относительная влажность окружающего прибор воздуха (при температуре 35 °C)	не более 80 %
Климатическое исполнение	УХЛ4

Устройство и работа прибора

3.1. Структурная схема прибора

3.1.1. Структурная схема прибора приведена на рис. 1.

Входные устройства

Структурная схема содержит:

- 5 входных устройств (входов);
- 2 регулятора;
- 4 компаратора;
- 6 цифровых фильтров;
- устройство для вычисления разности температур ΔT и относительной влажности ψ ;
- задатчик программ управления (программ технолога);
- 8 выходных транзисторных ключей;
- 5 выходных реле;
- устройство-сигнализатор об окончании выполнения программы технолога, устройство связи с компьютером, индикаторы.
- 3.1.2. На входные устройства прибора поступают сигналы от датчиков температуры «сухого» термометра $T_{\text{сух}}$; «влажного» термометра $T_{\text{влаж}}$; продукта $T_{\text{прод}}$ и датчиков положения «Задвижка 1» и «Задвижка 2».

3.2. Блоки структурной схемы прибора

3.2.1. Входные устройства

3.2.1.1. Измерение температуры

Температура измеряется с помощью термопреобразователей сопротивления. Это могут быть медные датчики TCM 50M ($R_{\rm o}$ = 50 Oм), TCM 100M ($R_{\rm o}$ = 100 Oм) и платиновые датчики TCП 50П ($R_{\rm o}$ = 50 Oм), TCП 100П ($R_{\rm o}$ = 100 Oм).

Работа таких датчиков основана на температурной зависимости электрического сопротивления металлов. Датчик, как правило, выполнен в виде катушки из тонкой медной или платиновой проволоки на каркасе из изоляционного материала, заключенной в защитную гильзу. Термопреобразователи сопротивления характеризуются двумя параметрами: $R_{\rm o}$ – сопротивление датчика при 0 °C и $W_{\rm 100}$ – отношение сопротивления датчика при 100 °C к его сопротивлению при 0 °C.

В приборах МПР51-Щ4 используется трехпроводная схема подключения термопреобразователей сопротивления (прил. В, рис. В.1). К одному из выводов термосопротивления подсоединяются два провода, а третий подключается к другому выводу. Такая схема при соблюдении условия равенства сопротивления всех трех проводов (если провода одного сечения, то равенства их длины), позволяет скомпенсировать сопротивление соединительных проводов.

Термопреобразователи сопротивления могут подключаться к прибору с использованием двухпроводной схемы подключения (см. *прил.* В, рис. В2), но при этом отсутствует компенсация сопротивления соединительных проводов, поэтому будет наблюдаться некоторая зависимость показаний прибора от колебаний температуры проводов и от увеличения протяженности линии связи «датчик – прибор».

3.2.1.2. Определение положения задвижки с помощью резистивного датчика

Сопротивление датчика должно находиться в пределах от 100 до 1000 Ом; при больших значениях сопротивления помехоустойчивость прибора будет снижаться.

Положение задвижки отображается на индикаторе «ПАРАМЕТР» в процентах: закрытому состоянию задвижки соответствует показание 0 %, открытому – 100 %.

Поскольку крайние положения движка переменного резистора датчика

Устройство и работа прибора

положения не всегда соответствуют полному открытию или закрытию задвижки, предусматривается процедура калибровки датчика при полностью закрытом состоянии (min) – 0 % и полностью открытом состоянии (max) – 100 %; показания на индикаторе между этими положениями линейно зависят от сопротивления переменного резистора.

Порядок действий пользователя при калибровке датчика положения приводится в прил. Г.

3.2.1.3. Фильтрация входных величин

Для ослабления влияния внешних импульсных помех на качество регулирования в приборе предусмотрена фильтрация результатов измерений входных величин. Фильтрация осуществляется независимо для каждого канала измерения, а также при вычислени влажности.

В приборе используется модель фильтра первого порядка. Для каждого канала измерения в отдельности можно при необходимости вводить свою постоянную времени фильтра, **рис. 2** (программируемые параметры dl l, dl2, dl3, dl4, dl5, dl6, прил. Д). При значении программируемого параметра, равном нулю, фильтрации не происходит. При увеличении значения параметра возрастает инерция изменения показаний датчика.

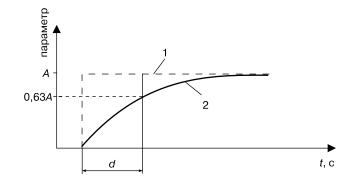


Рис. 2. Принцип действия фильтра:

1 – измеренное значение параметра:

2 – значение параметра после фильтра;

d – постоянная времени фильтра;

А – очередное измеренное значение параметра

Входные устройства

Действие постоянной времени фильтров становится заметным при ее значениях, превышающих время опроса датчиков (время опроса – примерно 4 с при значениях программируемого параметра $o \Box^{\mathcal{H}} = 001$, 002, 003 и 6 с при $o \Box^{\mathcal{H}} = 004$, 005 (см. прил. Д).

ПРИМЕЧАНИЕ. Значения постоянных времени фильтра для «сухого» и «влажного» термометров влияют на индикацию относительной влажности даже при значении параметра $dD^4 = 000$.

3.2.1.4. Вычисление влажности и разности температур камеры и продукта

Устройство для вычисления ΔT и ψ кроме измерения трех входных величин $T_{\text{сух}}$, $T_{\text{влаж}}$, $T_{\text{прод}}$ вычисляет разность между $T_{\text{сух}}$ и $T_{\text{прод}}$, равную ΔT , а также, используя величины $T_{\text{сух}}$ и $T_{\text{влаж}}$, вычисляет относительную влажность воздуха Ψ .

Прибор вычисляет относительную влажность воздуха по психрометрическому методу. Для этого используются значения температуры «сухого» и «влажного» термометров. «Cyxoй» Tepmometp — это обычный термометр, измеряющий температуру газовой среды в камере. «Bлажный» Tepmometp — это термометр с увлажненным фитилем на своем чувствительном элементе. На основе полуэмпирических формул выведена общепринятая формула расчета относительной влажности воздуха Ψ , %.

$$\Psi = \frac{E_{\text{влаж}}}{E_{\text{суx}}} - \frac{A \times P \times \left(T_{\text{суx}} - T_{\text{влаж}}\right)}{E_{\text{суx}}},$$

где $E_{\scriptscriptstyle{\mathsf{влаж}}}$ – максимально возможное парциальное давление водяного пара при температуре воздуха $T_{\scriptscriptstyle{\mathsf{влаж}}}$, °C;

P – атмосферное давление, Па (при вычислении принято P = 101308 Па);

т_{ок} - температура «сухого» термопреобразователя, °С;

температура «влажного» термопреобразователя, °C;

А – психрометрический коэффициент (психрометрическая постоянная).

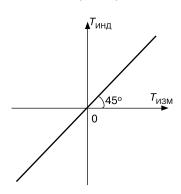


Рис. 3. Характеристика исправного датчика

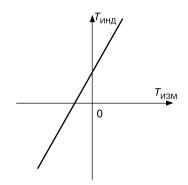
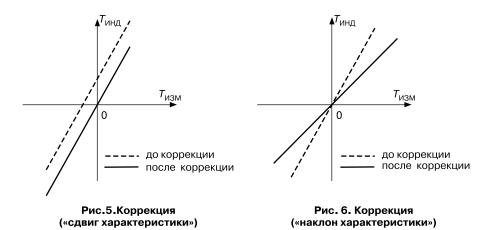


Рис. 4. Характеристика датчика, измененная вследствие погрешностей


Устройство и работа прибора

3.2.1.5. Коррекция показаний датчиков температуры

Исправный датчик должен иметь характеристику (зависимость индицируемой прибором температуры $T_{\text{мал}}$ от измеряемой температуры $T_{\text{мал}}$), изображённую на **рис. 3**.

Вследствие погрешности изготовления, вызванной погрешностью намотки измерительного резистора, несоответствием материала датчика стандарту, старения датчика, характеристика может изменяться и, в общем случае, может принять вид, показанный на **рис. 4**. Для «исправления» характеристики в приборе предусмотрена коррекция показаний датчиков температуры.

Для сдвига характеристики в вертикальном направлении (**рис. 5**) надо ввести корректирующее значение δ , программируемые параметры «сдвиг характеристики» $\frac{1}{6} \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right)$ (см. прил. Д).

В результате коррекции значение температуры, выводимое на индикатор, будет равно, °C:

$$T_{_{\text{ИНЛ}}} = (T_{_{\text{ИЗМ}}} + \delta) \times (1 + \alpha/100 \%).$$

Необходимо иметь в виду, что δ задаётся в градусах, а α – в процентах от измеренной величины.

Пример коррекции показаний температурного датчика приведен в прил. Ж.

3.2.2.1. *Регулятор* – это устройство, осуществляющее регулирование определённой величины, т.е. поддержание этой величины равной уставке или управление изменением этой величины.

РЕГУЛЯТОР может осуществлять любой из указанных ниже законов регулирования, в зависимости от свойств управляемого объекта:

- пропорционально-интегрально-дифференциальный (ПИД) закон;
- пропорциональный (П) закон;
- пропорционально-интегральный (ПИ) закон;
- пропорционально-дифференциальный (ПД) закон;
- релейный (Т) закон.

В общем случае регуляторы осуществляют регулирование измеряемой величины по ПИД-закону. На выходе регулятора вырабатывается управляющий сигнал Y, действие которого направлено на уменьшение отклонения текущего значения контролируемой величины от заданного.

Величина выходного сигнала вычисляется, исходя из рассогласования E, которое равно разности $T_{\rm уст}$ (заданного значения – уставки) и $T_{\rm изм}$ (измеренного значения), а также из установленных в приборе значений ПИД-коэффициентов. Величина выходного сигнала может изменяться от 0 до 100 % и определяется отношением длительности замыкания выходного реле (длительности выходного управляющего импульса) к периоду следования выходных управляющих импульсов $T_{\rm cg}$.

Выходной сигнал У вычисляется по следующей формуле:

$$Y = \frac{D_i}{T_{\text{c.t.}}} = \frac{1}{X_p} \left(E_i + \tau_{\text{t.t.}} \cdot \frac{\Delta E}{\Delta t_{\text{HSM}}} + \frac{1}{\tau_{\text{t.t.}}} \cdot \sum_{n=0}^{n=i} f(E_n) \right), \tag{1}$$

где $D_{\scriptscriptstyle i}$ – длительность выходного управляющего импульса;

 $T_{\rm cn}$ – период следования управляющих импульсов;

 X_{n}^{-} – полоса пропорциональности;

 $\vec{E_i}$ – рассогласование, измеренное в i-й момент времени;

 $\Delta t_{_{\mathrm{ИЗМ}}}$ – время между этими измерениями;

 $\tau_{_{\!\scriptscriptstyle \Pi}}$ – постоянная времени дифференцирования;

т – постоянная времени интегрирования;

 $f(E_{n})$ – функция ограничения очередного члена интегральной суммы;

n – число измерений от начала регулирования до i-го момента времени.

Из формулы (1) видно, что при Π ИД-регулировании сигнал управления зависит от:

$$\frac{E_i}{X_{\mathrm{p}}}$$
 – пропорциональной составляющей выходного сигнала;

$$au_{\mathrm{J}} \cdot \frac{\Delta E}{\Delta t_{\mathrm{usm}}}$$
 – дифференциальной составляющей выходного сигнала;

Устройство и работа прибора

 $\frac{1}{ au_{_{
m H}}\cdot X_p}\cdot \sum_{n=0}^{n=i}f(E_n)$ – интегральной составляющей выходного сигнала.

ПИД-ЗАКОН реализуется с помощью следующих программируемых параметров:

- постоянная времени дифференцирования 🖺 (Р.Д.)
- постоянная времени интегрирования РОЗ(Р.ОЗ)
- полоса пропорциональности РПЗ(Р.ПЗ)
- период следования выходных (управляющих) импульсов регулятора РПЧ(Р.ПЧ)
- зона действия интегральной составляющей РПБ(Р.ПБ)
- ограничение максимальной мощности исполнительного устройства РПБ(Р.ПБ)
- тип исполнительного устройства на выходе регулятора Рад (Р.д.т)
- зона нечувствительности *РПВ*(*РПВ*)

Параметры регулирования для обоих регуляторов (кроме уставок), см. *прил.* Д. устанавливаются на уровне программирования *L* ∠ (см. разд. 4) один раз и действуют одинаково для всех программ и шагов.

3.2.2.2. Полоса пропорциональности

При действии П-закона регулятор выдает импульсы, в которых присутствует только пропорциональная составляющая величины выходного сигнала.

Полоса пропорциональности X_{ρ} (**рис. 7**), как и отклонение E, выражается в единицах контролируемого параметра. Чем шире полоса пропорциональности, тем меньше величина выходного сигнала при одном и том же отклонении. Вне полосы пропорциональности выходной сигнал равен 0 или 100 %.

При измененении выходного сигнала выходные управляющие импульсы изменяют свою ширину при постоянном периоде следования (широтно-импульсная модуляция – ШИМ).

Если уменьшать полосу пропорциональности, то зона ШИМа также будет уменьшаться. В предельном случае, когда полоса пропорциональности равна нулю, ШИМ осуществляться не будет (частный случай П-закона регулирования – Т-закон (релейный)) (рис. 8).

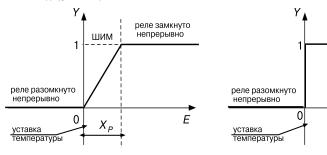


Рис. 7. П-закон регулирования

Рис. 8. Т-закон регулирования (релейный): полоса пропорциональности X_p равна нулю

реле замкнуто

непрерывно

Полоса пропорциональности задается с помощью программируемого параметра PD3 (P.D3) (см. $прил. \mathcal{A}$).

3.2.2.3. Постоянная времени интегрирования

При выходе температуры на заданное значение (уставку) (при пропорциональном законе регулирования), она устанавливается около уставки, несколько не доходя до неё (от долей до нескольких градусов). Эта разность будет тем больше, чем больше значение полосы пропорциональности.

Для устранения этого вводится параметр «постоянная времени интегрирования», который в приборе описывается программируемым параметром РСС (Р.СС), см. прил. Д. Чем меньше значение постоянной времени интегрирования, тем быстрее возрастает длительность выходных импульсов регулятора и, следовательно, тем быстрее температура достигает уставки. Чем больше значение постоянной времени интегрирования, тем меньше вклад интегральной составляющей в выходной сигнал (см. формулу (1)).

После задания постоянной времени интегрирования происходит переход от П-закона к ПИ-закону регулирования.

3.2.2.4. Зона линейного действия интегральной составляющей

Рассмотрим пример, где регулятор должен поддерживать $T_{\rm ycr}$ = 150 °C, а исходная температура равна 20 °C. Тогда в начале нагрева рассогласование E_i = 130 °C.

При ПИД-регулировании к интегральной сумме (последнее слагаемое в формуле (1)) прибавляется рассогласование после каждого измерения. С ростом температуры каждый последующий член суммы уменьшается, но общая сумма интегральной составляющей сигнала оказывается недопустимо большой при приближении температуры к уставке, что приводит к значительному перерегулированию. Чтобы этого не происходило, вводится ограничение величины очередного слагаемого интегральной суммы при помощи зоны линейного действия интегральной составляющей $2X_{_{\rm M}}$, которая задается программируемым параметром $P \mathbb{D} S$ ($P \mathbb{D} S$), см. $D \mathbb{D} S$, см. $D \mathbb{D} S$, см. $D \mathbb{D} S$ ($D \mathbb{D} S$), см. $D \mathbb{D}$

Зависимость величины каждого последующего члена интегральной суммы от отклонения показана на рис. 9.

Из **рис. 9** видно, что, чем уже зона линейного действия интегральной составляющей (чем меньше значение программируемого параметра PDS (P.DS)), тем меньше значение, добавляющееся к интегральной сумме при большом отклонении. Следовательно, при первом выходе на уставку (после первого включения) при меньшем значении параметра PDS (P.DS) перерегулирование будет меньше. В то же время подтягивание регулируемой величины к уставке (в установившемся режиме) замедляется.

Значение функции $f(E_n)$ определяется так:

$$f(E_n) = E$$
, при $|E| < X_{_{\text{и}}}$ (см. **рис. 9**); $f(E_n) = \text{P05}$, при $|E| > X_{_{n}}$;

т.е. в диапазоне значений от E=0 до $E=\pm X_{_{\rm M}}$ $f(E_{_{\rm N}})=E$, а за пределами диапазона $E=\pm X_{_{\rm M}}$ происходит ограничение $f(E_{_{\rm N}})$.

Устройство и работа прибора

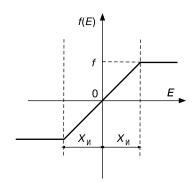


Рис. 9. Ограничение интегральной составляющей при помощи X_{N}

3.2.2.5. Постоянная времени дифференцирования

При постоянной времени дифференцирования не равной 0, прибор будет работать в режиме ПИД-регулятора. Чем больше значение постоянной времени дифференцирования, тем быстрее будет реагировать выходной сигнал на изменение входного сигнала. Чем меньше значение постоянной времени дифференцирования, тем меньше вклад дифференциальной составляющей в выходной сигнал (см. формулу (1)).

Постоянная времени дифференцирования задается с помощью программируемого параметра $P\Box ! (P.\Box !)$ (см. прил. \mathcal{A}).

3.2.2.6. Ограничение максимальной мощности

Если мощность исполнительного устройства слишком велика для данного объекта управления, может потребоваться ее ограничение. Ограничение мощности происходит посредством ограничения длительности выходных импульсов (при постоянном периоде их следования).

В приборе ограничение мощности осуществляется с помощью программируемого параметра PDE (P.DE) (см. прил. Д).

Если вычисленная регулятором длительность очередного импульса превышает значение, установленное в параметре PDS (P.DS), то длительность выходного импульса $t_{\text{имп. вых.}}$ будет равна значению, установленному в этом параметре (в процентах от максимальной мощности исполнительного устройства) (**рис. 10** и **рис. 11**).

3.2.2.7. Тип исполнительного устройства

Для правильного формирования выходного сигнала ПИД-регулятора необходимо задать тип исполнительного устройства: нагреватель или холодильник.

Нагревателем условно называют устройство, при включении которого увеличивается значение измеряемого параметра. Холодильником называют устройство, при включении которого уменьшается значение измеряемого параметра.

14

Регуляторы

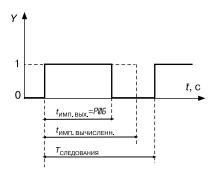


Рис. 10. Ограничение максимальной мощности. Временная диаграмма

Рис. 11. Ограничение максимальной мощности. Выходная характеристика

Тип исполнительного устройства на выходе 1-го (2-го) регуляторов задается программируемым параметром $P\Box 7$ ($P.\Box 7$), см. $прил. \mathcal{J}$.

При управлении задвижками учитывается, что двигатель задвижки – это интегрирующее звено, и регулятором производится дополнительное дифференцирование выходного сигнала. В этом случае «постоянная времени дифференцирования» не учитывается, даже если она была ранее установлена. Но «полоса пропорциональности» и «постоянная времени интегрирования» производят то же действие, что и при управлении нагревателем (холодильником).

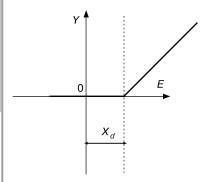
3.2.2.8. Зона нечувствительности

Зона нечувствительности – это такая область значений рассогласований входного сигнала E, в которой считается, что E=0. За пределами этой зоны регулятор определяет величину отклонения по формуле

$$E = |E_{o}| - X_{d}$$

где E_{a} – истинное отклонение;

 X_d – ширина зоны нечувствительности.


Размерность величины зоны нечувствительности та же, что и у входной величины, подаваемой на вход регулятора. Зона нечувствительности для «нагревателя» представлена на рис. 12. для «нагревателя – холодильника» – на рис. 13.

ПРИМЕЧАНИЯ. 1. При значении *РВЗ*=000 полоса пропорциональности регулятора равна нулю (а не бесконечности, как было бы, если строго следовать формуле), и пропорциональная составляющая выходного сигнала обратится в ноль.

2. При 🖓 ((Р.Д.) = 000 дифференциальная составляющая выходного сигнала обратится в ноль.

3. При $P\Box \ (P\Box \)=000$ интегральная составляющая выходного сигнала будет равна нулю (а не стремится к бесконечности, как было бы, если строго следовать формуле).

Устройство и работа прибора

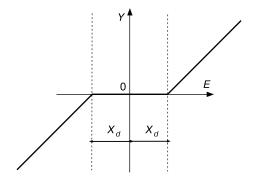


Рис. 12. Зона нечувствительности для исполнительного устройства типа «нагреватель»

Рис. 13. Зона нечувствительности для исполнительного устройства типа «нагреватель – холодильник» или «задвижка»

3.2.3. Компараторы

3.2.3.1. *Компаратор* – это устройство, предназначенное для сравнения входной величины с эталонной; при этом компаратор имеет два состояния выходного сигнала: состояние выходного сигнала изменяется, если входная величина пересекает пороговый уровень (эталон).

Способы использования компараторов:

- для оповещения об аварийных или близких к аварийным ситуациях (поэтому их еще называют компараторами сигнала ТРЕВОГА);
- для двухпозиционного регулирования;
- для включения (выключения) оборудования при достижении управляющим сигналом установленного уровня или выходе его за установленные пределы.
- для включения (выключения) оборудования по истечении заданного времени.

Работа каждого из четырех компараторов регулируется следующими **ПРОГРАММИРУЕМЫМИ ПАРАМЕТРАМИ**:

- входная величина компаратора (*[[] |*);
- состояние выхода компаратора (ЕП2);
- уставки компаратора (*[[]]З...[[]]Ч*);
- логика работы компаратора (*EII5*);
- блокировка срабатывания компаратора до 1-го достижения уставки (ЕОБ, ЕОТ);
- блокировка срабатывания компаратора до снятия внешнего воздействия (ССВ);
- параметры задержки срабатывания компаратора (🖽, 🕻 🗓).

Программируемые параметры $c \mathbb{D} \ | \dots c \mathbb{D} \ ($ см. $прил. \ Д)$ для каждого компаратора устанавливаются на уровне L1 (см. разд. 4) для каждой программы в целом (отдельно для каждого шага задать уставки и другие параметры компаратора нельзя). Если

компаратор не используется, то его выход надо отключить, задав значение параметра $c \Box 2 = 000$.

3.2.3.2. Входная величина компаратора

На вход компаратора подается одна из пяти измеряемых или вычисляемых входных величин ($T_{\text{сух}}$, $T_{\text{прод}}$, $T_{\text{влаж}}$, ΔT , ψ) непосредственно или входной сигнал, поступающий на вход одного из регуляторов (параметр $\varepsilon \square t$).

3.2.3.3. Выход компаратора

С помощью программируемого параметра $c \square 2$ (см. *прил.* Д) пользователь определяет, на какое реле будет подаваться выходной сигнал компаратора. На одно и то же реле могут быть поданы выходные сигналы от нескольких компараторов (т.е. может быть объединение их выходов по схеме «ИЛИ»).

3.2.3.4. Уставки компаратора

С помощью программируемых параметров $c \square 3$ и $c \square 4$ (см. прил. Д) задают значения, соответственно, верхней и нижней уставок компаратора, т.е. предельно допустимые для данного технологического процесса значения контролируемой величины. Верхней уставкой автоматически становится уставка с большим значением.

3.2.3.5. Логика работы компаратора

Закон, в соответствии с которым будет работать компаратор, устанавливается с помощью программируемого параметра $\varepsilon \frac{0.05}{0.05}$ (см. прил. \mathcal{A}).

При $c...^{25}$ = 000 (**рис. 14**) компаратор замыкает свое выходное реле в случае превышения контролируемой величиной установленного значения верхней уставки, размыкает реле при уменьшении выходной величины ниже нижней установки. Этот закон используется, например, при управлении «холодильником»; для сигнализации о превышении допустимой температуры нагрева.

При $\varepsilon . 15 = 001$ (**puc. 15**) компаратор замыкает свое выходное реле в случае, когда контролируемая величина становится меньше значения нижней уставки, размыкает реле, когда входная величина превысит верхнюю уставку. Этот закон используется, например, для поддержания температуры при помощи «нагревателя»; для сигнализации об остывании объекта ниже определенной температуры.

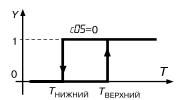


Рис.14. Компаратор срабатывает по верхней уставке:

Y = 1— выходное реле замкнуто; Y = 0 — выходное реле разомкнуто

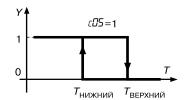


Рис. 15. Компаратор срабатывает по нижней уставке:

Y = 1 — выходное реле замкнуто; Y = 0 — выходное реле разомкнуто

Устройство и работа прибора

Эти законы используются также для включения оборудования по достижении определенной температуры.

ПРИМЕЧАНИЕ. Если необходимо, чтобы оборудование после включения больше не выключалось, надо установить значение параметра $\varepsilon \square B = 001$ (см. *прил.* \mathcal{L} и п. 3.2.3.7).

При $\epsilon \overline{05} = 003$ (**рис. 17**) компаратор используется для сигнализации о выходе контролируемой величины за установленные пределы.

3.2.3.6. Блокировка срабатывания компаратора до 1-го достижения уставки

В случаях, когда в начале технологического процесса, например, при нагреве, разница между исходной температурой и уставкой намного превосходит установленное значение верхней уставки компаратора, должно произойти аварийное срабатывание компаратора. Чтобы избежать этого, в приборе предусмотрен программируемый параметр сПБ (см. прил. Д), позволяющий игнорировать первое "ненужное» срабатывание компаратора (рис. 18), а аналогичная ситуация может возникнуть при переходе от одного шага программы к другому, если уставки этих шагов далеко отстоят друг от друга.

Блокировать срабатывание компаратора до 1-го достижения уставки можно как в начале программы (с помощью программируемого параметра $c \square 5$), так и в начале каждого шага программы (с помощью параметра $c \square 7$).

3.2.3.7. Блокировка срабатывания компаратора до снятия внешнего воздействия

Рис. 16. Компаратор срабатывает внутри установленных пределов

Рис. 17. Компаратор срабатывает вне установленных пределов

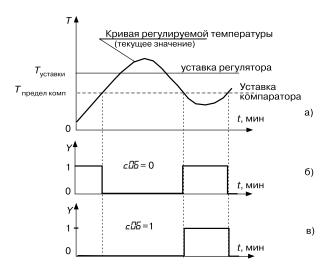


Рис. 18. Блокировка срабатывания компаратора до 1-го достижения уставки

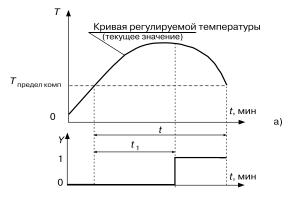
С помощью этого параметра возможно фиксировать факт выхода управляемой величины за установленный предел (пределы) в течение одной программы.

3.2.3.8. Время задержки срабатывания компаратора

При выходе управляемой величины за установленные пределы можно задержать во времени момент срабатывания компаратора:

- если время нахождения регулируемой величины t > t, (времени задержки срабатывания компаратора), то компаратор срабатывает, рис. 19,а;
- если время нахождения регулируемой величины $t < t_*$, то компаратор не срабатывает, **рис. 19**, **б**.

Этот режим работы компаратора реализуется путем заданием параметру с 🕮 ненулевого значения (см. прил. Д).


3.2.3.9. Время задержки отпускания компаратора

Аналогично задается задержка отпускания компаратора:

- если время нахождения управляемой величины ниже установленного предела после срабатывания компаратора меньше t_2 (установленного времени задержки отпускания компаратора), то отпускания не происходит (рис. 20).
- \bullet если больше, то по истечении времени t_0 происходит отпускание компаратора (рис. 21).

Этот режим работы компаратора реализуется заданием параметру с 🗓 на ненулевого значения (см. прил. Д).

Устройство и работа прибора

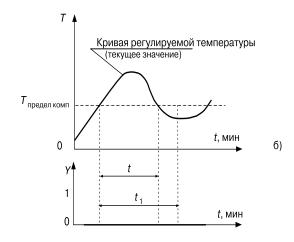


Рис. 19. Задержка срабатывания компаратора:

а) – $t > t_1$, компаратор срабатывает, б) – $t < t_1$, компаратор не срабатывает

Компараторы

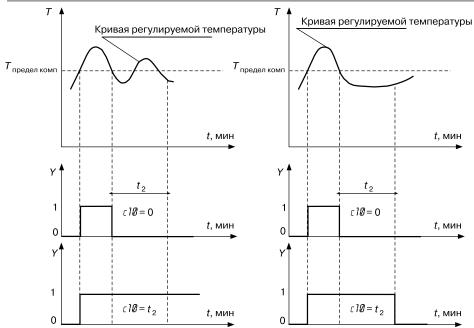


Рис. 21. Задержка отпускания компаратора: компаратор «не отпустил»

Рис. 22. Задержка отпускания компаратора: компаратор «отпустил»

3.2.4. Транзисторные ключи

Восемь транзисторных ключей прибора используются для управления оборудованием на текущем шаге управления программы технолога.

При выполнении программы каждый транзисторный ключ может находится в следующих состояниях:

- закрыт на протяжении всего шага;
- открыт на протяжении шага;
- работает в периодическом импульсном режиме на протяжении шага.

На каждом шаге режимы работы 1-го по 8-й ключей задаются программируемыми параметрами о□ 1...о□В (см. прил. Д).

Существует 14 импульсных режимов работы ключей, задаваемых в параметрах FDZ...F (5 (длительность импульса), F.DZ...F. (5 (длительность паузы), см. прил. D.

Примечание. Если назначается импульсный режим работы ключа, то шаг начинается с импульса (т.е. с замыкания ключа).

3.2.5. Выходные реле

На пять выходных реле прибора поступают выходные сигналы:

- на первое и второе реле с первого регулятора;
- на третье и четвертое реле со второго регулятора.

Устройство и работа прибора

Пятое реле «АВАРИЯ» автоматически замыкается при возникновении аварийной ситуации (см. ниже пп. 8.6.2, 8.6.4). Реле «АВАРИЯ» может также использоваться для вывода выходного сигнала компараторов.

Если регулятор управляет задвижками или одновременно «нагревателем» и «холодильником», то он использует оба «своих» реле. Если регулятор управляет только «нагревателем» или только «холодильником», то он использует одно «свое» реле. При этом первый регулятор использует второе реле, второй регулятор использует четвертое реле. В этом случае первое и третье реле остаются свободными и могут использоваться для вывода на них выходных сигналов с компараторов.

Выходной сигнал компаратора в отличие от выходного сигнала регулятора можно направить на любое реле. Реле, на которое назначается выход компаратора, должно быть свободным. В этом случае регулятор должен быть либо отключен, и тогда освобождаются оба его реле, либо регулятор должен управлять исполнительным устройством типа «нагреватель» или «холодильник», и тогда свободно одно его реле.

На одно свободное реле можно назначать выходы нескольких компараторов, объединяя выходы этих компараторов по схеме «ИЛИ», при этом реле будет замыкаться от сигнала любого компаратора, выход которого назначен на это реле.

3.2.6. Задатчик программ управления

Задатчик программ управления служит для задания уставок регуляторов и компараторов, режимов работы транзисторных ключей при выполнении программ управления (программ технолога).

Программы управления (программы технолога) создаются пользователем в соответствии с технологическим процессом, каждой стадии технологического процесса соответствуют отдельные участки программы технолога – шаги.

Параметры программы технолога можно разделить на две группы – параметры собственно программы и параметры шага.

Примечание. Параметры компараторов описаны в п. 3.2.3.

3.2.6.1. Параметры программ

Параметры программ включают параметры, относящиеся непосредственно к программе (HD l и HD2), и параметры компараторов – cD l...c lD (см. npun. L).

С помощью параметра Н□ (задаётся число шагов программы (рис. 22).

С помощью параметра НД возможно создание циклов (рис. 23, 24, 25). Циклы могут состоять из нескольких шагов, например, при организации суточного цикла работы теплиц (см. рис. 24), или из одного шага, например, при регулировании температуры в помещениях для хранения продукции, где поддерживаются постоянные климатические условия неопределённо долгое время (см. рис. 25).

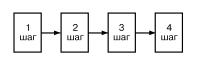


Рис. 22. Пример выполнения нециклической программы: *Н0* 1=004, *Н0∂*=000

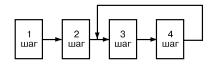


Рис. 23. Программа с циклом: *Н∅ 1*=004, *Н∅2*=003; последовательность шагов: 1,2,3,4,3,4,3,...

Задатчик программ управления

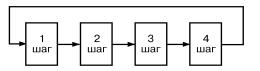


Рис. 24. Циклическая программа: ⊬□ ⊨4, ⊬□∂=1; Рис. 25. Циклическая программа последовательность шагов: 1,2,3,4,1,2,3,4,1,2,... из одного шага: ⊬□ ⊨1, ⊬□∂=1

3.2.6.2. Параметры шагов

Каждый шаг программы описывается тремя группами параметров.

Первая группа параметров о□ \....о□ (см. прил. Д) задаёт режимы работы транзисторных ключей (см. п. 3.2.4).

Вторая группа параметров 40 cdots ... 405 задаёт условия перехода от одного шага кдругому. Третья группа параметров 60 cdots ... 605 cdots (605 cdots) задаёт уставки для 1-го (605 cdots) регуляторов.

3.2.6.2.1. Условие перехода к следующему шагу (условие окончания шага) **Шаг программы управления** (программы технолога) может быть задан:

- по длительности (по времени), при этом параметр \(\frac{1}{2} \) != 001;
- по достижении установленного значения управляемой величины, при этом параметр 40 l = 000;
- по выполнении первых двух условий; шаг окончится по событию, произошедшему последним: если истекло установленное время шага, то по достижении управляемой величиной установленного значения, и наоборот; параметр 50 /= 002;
- по выполнении первых двух условий; шаг окончится по событию, произошедшему первым: по истечении времени шага, если не достигнуто установленное значение управляемой величины, и наоборот, при этом параметр 50 /= 003.

Условия перехода к следующему шагу в зависимости от значения температур $T_{\text{сух}}, T_{\text{влаж}}, T_{\text{прод}}, \Delta T$ и влажности ψ по отношению к их уставкам задаются параметром \mathfrak{SD} . Уставка температуры (или влажности), по достижении которой произойдет переход к следующему шагу, задается параметром \mathfrak{SD} .

Время длительности шага задается параметрами *УОЧ* и *УОБ*. Максимально возможная уставка для часов – 63 часа, а для минут – 59 минут.

3.2.6.2.2. Параметры 1-го (2-го) регуляторов на данном шаге

Входная величина регулятора задается параметрами $E\mathbb{G}^{l}(\mathbf{д}$ ля 1-го регулятора) и $E\mathbb{G}^{l}(\mathbf{d}$ ля 2-го регулятора).

Уставка входной величины 1-го (2-го) регуляторов задается параметрами $E\square$ 2 ($E.\square$ 2) – целая часть, $E\square$ 3 ($E.\square$ 3) – дробная часть.

Скорость выхода управляемой величины на уставку задается параметрами $E\square Y$ ($E.\square Y$) — значение скорости выхода на уставку; $E\square S$ ($E.\square S$) — знак скорости (положительный — рост входной величины, отрицательный — снижение входной величины).

Устройство и работа прибора

3.2.6.3. Пример программы регулирования температуры

Для наглядности программу управления можно представить в графическом виде (**рис. 26**).

На графике отображаются уставки для каждого шага и скорости выхода на них.

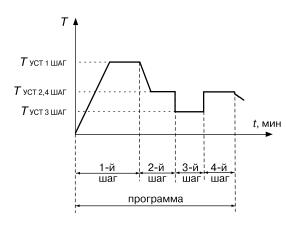


Рис. 26. Пример графика программы

На 1-м шаге скорость выхода на уставку задана и имеет положительный знак; на втором шаге - задана и имеет отрицательный знак; на третьем и четвёртом шагах скорость не задана (равна нулю), т.е. на этих шагах температура выходит на свои уставки с максимально возможной скоростью, которая определяется свойствами объекта управления (размерами нагреваемой камеры, материалом ее стен и т.д.) и свойствами исполнительного vстройства (конструкцией нагревателя, его мощностью и т.д.).

3.2.6.4. Разбиение памяти на программы и шаги

Программы управления можно создавать с разным числом шагов. Поскольку объем памяти ограничен, предусмотрен жесткий порядок разбиения памяти, отведенной для программ технолога: чем больше число шагов в программе, тем меньше число возможных программ, и наоборот. Поэтому максимальное число шагов следует определять заранее, на этапе подготовки прибора к работе.

Требуемый по условиям технологического процесса тип разбиения памяти задается программируемым параметром o \square (см. прил. \mathcal{L}).

Задавая число шагов в программе с помощью программируемого параметра $H\square I$ (см. $прил. \mathcal{A}$), следует иметь в виду, что их число будет ограничено значением параметра o \square .

3.2.6.5. Сохранение параметров программы управления при внезапном пропадании питания

В приборе предусмотрено сохранение значений текущих параметров в случае сбоев в работе питающей сети напряжением 220 В. Поведение прибора после появления пропавшего напряжения регулируется параметром оП7 (см. прил. Д):

- продолжение выполнения программы с момента пропадания питания (a☐7 = 001);
- аварийный останов со срабатыванием реле 5 «АВАРИЯ» (оД7 = 002);
- неаварийный останов переход в режим ОСТАНОВ (оД 7 = 003).

Пользователь может задавать ширину зоны значений регулируемой величины таким образом, что если после восстановления питания 220 В значение регулируемой величины окажется внутри этой зоны, прибор продолжит выполнение программы, если регулируемая величина выйдет за пределы зоны, то прибор

Задатчик программ управления

перейдет в режим ОСТАНОВ. Границы этой зоны задаются в параметре *о*□В. Размерность зоны – % от значения температуры, которую имел объект управления в момент отключения питания 220 В.

Программа управления отслеживает изменение температуры после перерыва в питании на всех трех температурных входах. И если хотя бы на одном входе произошло изменение регулируемой величины, выходящее за пределы, заданные параметром оПВ, то поведение прибора будет зависеть от значения параметра оПТ: 004 или 005 (см. прил. Д). Поэтому следует обратить внимание на то, чтобы после перерыва в питании изменение регулируемой величины на входах, по которым не происходит регулирование температуры объекта, не было больше, чем изменение на входе, по которому происходит регулирование.

3.2.7. Устройство связи с компьютером

Последовательность выполнения программы управления может быть зарегистрирована на IBM РС при использовании устройства адаптера сети ОВЕН АС2. Существуют две программы регистрации, работающие под управлением Windows 95/98.

Программа регистрации «Reporter 1.6» работает только с приборами МПР51. На одном компьютере можно запустить несколько (по количеству свободных последовательных портов) экземпляров программы, но не более четырех. Один запущенный экземпляр программы работает с одним последовательным портом компьютера, к которому подключен адаптер интерфейса ОВЕН АС2. Один запущенный экземпляр программы может обеспечить регистрацию данных от восьми приборов МПР51-Щ4. Все запущенные экземпляры программы должны работать с разными последовательными портами компьютера. Формат записываемых данных позволяет легко использовать полученные файлы регистрации для статистической обработки или представления полученных данных в виде графиков посредством других программ, например, Microsoft Excel.

Программа отображения хода технологического процесса «OWEN Process Manager» может работать со различными приборами OBEH и имеет следующие возможности:

- принимать информацию от приборов через заданные интервалы времени;
- архивировать данные через заданные промежутки времени;
- отображать текущие показания приборов в цифровом и графическом виде;
- реагировать на выход измеряемых значений за установленные пользователем границы;
- позволяет просматривать архив измерений за любой промежуток времени в табличном и графическом виде.

Для последующей обработки данных, внесенных в архив, необходимо представить их в форматах Access, FoxPro, DBase, Excel.

При работе с программой «OWEN Process Manager» к каждому последовательному порту компьютера подключается также один адаптер ОВЕН АС2, к которому, в свою очередь, можно подключить до восьми приборов МПР51-Щ4. Максимальное количество устройств АС2, подключаемых к компьютеру, ограничивается только количеством его последовательных портов.

Конструкция прибора

3.3. Конструкция прибора

3.3.1. Устройство прибора

Прибор МПР51-Щ4 изготавливается в пластмассовом корпусе, предназначенном для утопленного монтажа на вертикальной плоскости щита управления электрооборудованием.

Корпус состоит из двух частей, соединяемых между собой при помощи четырех винтов. Для обеспечения отвода тепла, выделяющегося при работе прибора, на боковых гранях задней части корпуса предусмотрены вентиляционные щели. Внутри корпуса размещены четыре платы печатного монтажа, на которых располагаются элементы схемы прибора. Соединение плат друг с другом осуществляется при помощи плоских разъемных кабелей.

Крепление прибора на щите обеспечивается двумя фиксаторами, входящими в комплект поставки.

Габаритные и установочные размеры прибора приведены в прил. А.

Конструктивно схема прибора размещается на четырех платах: верхней, нижней, задней и передней.

На нижней плате размещаются:

- схема источника питания и пять выходных реле;
- внешний разъем, на который выведены контакты выходных реле и контакты для подачи питающего переменного напряжения 220 В.

3.3.2. Индикация и управление

На лицевой панели прибора (**рис. 27**) расположены цифровые и точечные светодиодные индикаторы, служащие для отображения текущей информации о параметрах и режимах работы прибора МПР51-Щ4. Здесь же расположены четыре кнопки, предназначенные для управления прибором в различных режимах.

3.3.2.1. Цифровые индикаторы имеют следующее назначение.

Цифровой индикатор «ЧАСЫ:МИНУТЫ» в режимах ОСТАНОВ и РАБОТА указывает время от начала работы программы; в режиме ПРОГРАММИРОВАНИЕ – имя задаваемого (просматриваемого) параметра.

Цифровой индикатор «ПАРАМЕТР» отображает значения температуры, полученные по трем каналам измерения ($T_{\text{сух}}$, $T_{\text{влаж}}$, $T_{\text{прод}}$) и положение задвижек, определенное по двум каналам (КЗР1 и КЗР2). В режиме ПРОГРАММИРОВАНИЕ на этот индикатор выводится значение задаваемого (просматриваемого) параметра. Индикация измеряемых величин производится автоматически или вручную, в зависимости от значения программируемого параметра o t (см. t).

Цифровой индикатор «ШАГ» в режимах ОСТАНОВ и РАБОТА указывает номер шага. В режиме ПРОГРАММИРОВАНИЕ на уровне L1 при задании или просмотре параметров компараторов на цифровом индикаторе «ШАГ» указывается номер компаратора. По окончании работы программы индицируется слово «Ed» (сокр. англ. «End» – конец).

Цифровой индикатор «ВЛАЖНОСТЬ, %» показывает влажность или номер программы в зависимости от значения параметра о□2 (см. прил. Д), управляющего выводом на этот индикатор. В режиме ПРОГРАММИРОВАНИЕ на уровнях L2, L3, L4 на этом индикаторе высвечивается номер уровня.

Конструкция прибора

3.3.2.2. Точечные светодиодные индикаторы располагаются в правой верхней части передней панели.

Светодиод «АВАРИЯ» загорается при выходе значения входного параметра за пределы допустимых значений, а также после окончания работы программы.

Светодиод «СТОП» загорается, когда прибор находится в режиме ОСТАНОВ.

Пять зеленых светодиодов указывают канал измерения, показания которого выведены на цифровой индикатор «ПАРАМЕТР».

3.3.2.3. Кнопки управления размещаются в правой нижней части передней панели.

Кнопка (вверх) в режиме ОСТАНОВ и РАБОТА предназначена для перехода между входными величинами, отображаемыми на индикаторе «ПАРАМЕТР». В режиме ПРОГРАММИРОВАНИЕ служит для перехода между параметрами при их просмотре и увеличении значения программируемого параметра.

Кнопка [1907] предназначена для входа в режим ПРОГРАММИРОВАНИЕ, перехода на различные уровни основного меню, а также для занесения в память выбранного значения программируемого параметра.

Кнопка в режиме ОСТАНОВ служит для перехода в начало первого шага программы и сброса сигнала АВАРИЯ. В режиме ПРОГРАММИРОВАНИЕ – для уменьшения значения программируемого параметра.

Кнопка [тех] переводит прибор из режима ОСТАНОВ в режим РАБОТА и обратно. В режиме ПРОГРАММИРОВАНИЕ с помощью этой кнопки осуществляется выход из текущего уровня в основное меню без записи нового значения программируемого параметра, а из основного меню осуществляется выход из режима ПРОГРАММИРОВАНИЕ).

Рис. 27. Лицевая панель прибора

Программирование прибора

4.1. Режимы работы прибора

- 4.1.1. Прибор МПР51-Щ4 может функционировать в следующих режимах:
- OCTAHOB:
- РАБОТА;
- ПРОГРАММИРОВАНИЕ.
- 4.1.2. Прибор может находиться либо в режиме РАБОТА, либо в режиме ОСТАНОВ. Работа в режиме ПРОГРАММИРОВАНИЕ происходит на фоне режимов ОСТАНОВ или РАБОТА.

Схема, поясняющая соотношение режимов и порядок перехода из режима в режим при нажатии соответствующих кнопок, представлена на рис. 28.

Рис. 28. Режимы работы прибора

Режим ОСТАНОВ – это исходный режим, в который прибор автоматически переходит при включении питания. В этом режиме прибор функционирует как измеритель и индикатор, регулирование не происходит, компараторы не работают.

Режим РАБОТА – это режим задатчика-регулятора, при котором прибор осуществляет регулирование по заданной пользователем программе управления; регуляторы и компараторы работают, происходит отсчет времени от начала выполнения программы.

4.2. Режим программирования

4.2.1. Общие указания

- 4.2.1.1. Режим ПРОГРАММИРОВАНИЕ предназначен для установки значений параметров работы прибора, необходимых при эксплуатации, записи их в энергонезависимую память МПР51-Щ4, а также просмотра значений параметров.
- 4.2.1.2. В приборе предусмотрено программирование параметров **на четырех уровнях**:
 - на уровне L1 задаются значения параметров программ управления:
 - на уровне L2 задаются значения параметров, общих для всего прибора, и значения параметров регулирования;
 - на уровне L3 задаются значения параметров автонастройки ПИД-регуляторов;
 - на уровне L4 задаются значения параметров калибровки датчиков температуры и положения задвижки.

4.2.2. Основное меню режима ПРОГРАММИРОВАНИЕ

4.2.2.1. Схема основного меню режима ПРОГРАММИРОВАНИЕ, а также меню подрежима выбора программы для исполнения изображены на **рис. 29**. По **28**

4.2.2.2. Для входа в режим ПРОГРАММИРОВАНИЕ надо нажать кнопку пол. (см. **рис. 30**, слева вверху), при этом на верхнем индикаторе «ЧАСЫ:МИНУТЫ» замигает сообщение «РгС».

Для выбора уровня программирования необходимо после появления сообщения «Рг \mathcal{L} » (см. рис. 29) нажать кнопку (вверх), прибор перейдет на уровень L1; дальнейшее нажатие этой кнопки позволяет последовательно перейти на уровни программирования L2, L3, L4 и далее в «нижнее» состояние « \mathcal{L} » основного меню (означает окончание списка параметров, в данном случае – списка уровней программирования). При этом на индикаторе «ЧАСЫ:МИНУТЫ» высвечивается наименование каждого уровня и состояния.

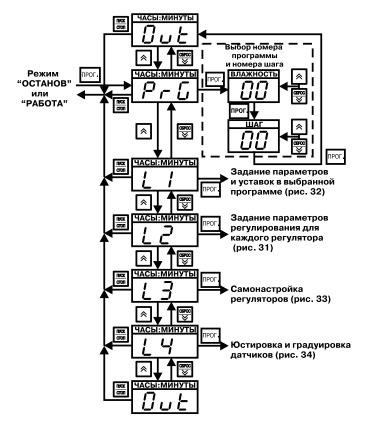


Рис. 29. Основное меню режима ПРОГРАММИРОВАНИЕ

Программирование прибора

Нажатием кнопки $\begin{tabular}{l} \begin{tabular}{l} \begin{tabula$

4.2.2.3. Для перехода в подрежим выбора программы (шага) для исполнения необходимо после появления сообщения «Рг [» (см. рис. 29) нажать кнопку прог. Прибор перейдет в подрежим выбора программы (шага) для исполнения (см. рис. 29, справа вверху обведенную пунктиром часть схемы). При этом на индикаторе «ВЛАЖНОСТЬ, %» индицируется номер программы.

С помощью кнопок (вверх) или (вниз) устанавливается номер нужной программы, которая будет выполняться с первого шага.

Если программа должна выполняться не с первого шага, то, нажав кнопку [пот.] (см. рис. 29), устанавливают кнопками (вверх) и (вниз) номера шага, с которого начнется выполнение программы; при этом на индикаторе «ШАГ» высвечивается номер шага. Для выхода из подрежима выбора программы (шага) для исполнения надо нажать кнопку [пот.] – происходит переход в «верхнее» состояние «Дос», при этом на индикаторе «ВЛАЖНОСТЬ, %» высвечиваются прочерки, а на индикаторе «ЧАСЫ:МИНУТЫ» появляется надпись «Дос». Для последующего выхода из режима ПРОГРАММИРОВАНИЕ надо еще раз нажать кнопку [пот.].

Если вход в режим программирования осуществляется из режима РАБОТА, то после выхода из режима ПРОГРАММИРОВАНИЕ сразу начнется выполнение установленной программы (шага).

4.2.2.4. Выход из основного меню режима ПРОГРАММИРОВАНИЕ осуществляется путем нажатия кнопки стоя прибор перейдет в тот режим, из которого был произведен вход в режим ПРОГРАММИРОВАНИЕ.

4.2.3. Программирование на уровне L2

4.2.3.1. На **рис. 30** изображена схема, поясняющая программирование на уровне L2. По вертикали расположены изображения верхнего индикатора «ЧАСЫ:МИНУТЫ», на который выводятся имена программируемых параметров, общих для всего прибора, и параметров регулирования (см. *прил.* Д).

Группы параметров обведены пунктиром; полностью изображены только первый и последний параметры группы; параметры, находящиеся между ними, условно обозначены в виде узкого прямоугольника.

Переход от параметра к параметру происходит путем нажатия кнопки (вверх), или (вниз), направление перехода указано на рисунке стрелкой.

Справа по вертикали на **рис. 30** расположены изображения индикатора «ПАРАМЕТР», на который выводятся значения программируемых параметров. Здесь же изображен сдвоенный индикатор: на верхнем индикаторе «ЧАСЫ:МИНУТЫ» высвечивается имя кода доступа в уровень программирования — «Eod», на нижнем индикаторе «ПАРАМЕТР» — значение кода доступа — например, «000».

ПРОГРАММИРОВАНИЕ и возврат в режим ОСТАНОВ или РАБОТА.

фильтрации

входных

сигналов

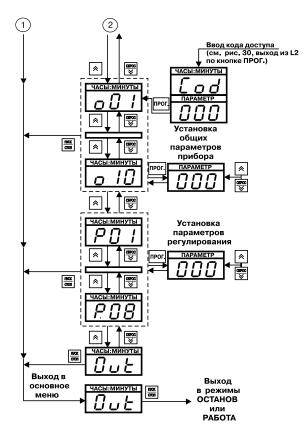
ПАРАМЕТР

Рис. 30. Схема, поясняющая программирование на уровне L2

(1), (2) – точки соединения частей рисунка

4.2.3.2. Вход в уровень L2

Для входа в уровень L2 необходимо, находясь в основном меню на мигающем «L2», нажать кнопку пол. На сдвоенном индикаторе «ЧАСЫ:МИНУТЫ» будет гореть надпись «Год», на индикаторе «ПАРАМЕТР» будет мигать произвольное число (на рис. 29 число «000» изображено условно), на самом нижнем индикаторе отображается обозначение уровня L2.


В общем случае (когда параметр секретности «5 cr» в уровне L2 равен 1 или 2) надо кнопками (вверх) и (вниз) установить код доступа в уровень L2: cod = -13, и затем нажать кнопку

Если параметр 5cr = 3 (устанавливается таким при продаже прибора), то можно сразу нажимать кнопку [1907]. Происходит переход к первому, общему для всего прибора параметру old l (см. середину **рис. 30**), при этом имя параметра «old l» мигает на индикаторе «ЧАСЫ:МИНУТЫ», значение параметра отображается на индикаторе «ПАРА-МЕТР».

4.2.3.3. Изменение значения параметра. Запись нового значения. Отказ от записи нового значения

Для изменения значения параметра следует нажать кнопку мунет. Имя параметра на индикаторе «ЧАСЫ:МИНУТЫ» перестанет мигать, начнет мигать значение параметра на индикаторе «ПАРАМЕТР». Кнопками (катараметра)

Программирование прибора

Продолжение рис. 30

Для записи измененного значения надо нажать кнопку поль, новое значение запишется в память и произойдет переход к следующему параметру (на рис. 30 показано стрелками вниз).

Если набрано неверное значение, то вместо кнопки голедует нажать кнопку стол; записи в память нового значения и перехода к следующему параметру не произойдет.

4.2.3.4. Просмотр значений параметров (без записи)

Для просмотра значений параметров надо использовать кнопку (вверх) – если надо перемещаться вниз по списку параметров и кнопку (вниз) – если надо перемещаться вверх по списку параметров (см. рис. 30), при этом на мигающем инди-

каторе «ЧАСЫ:МИНУТЫ» отображается имя параметра, а на индикаторе «ПАРАМЕТР» – его значение. Таким образом можно просмотреть значения всех параметров, не входя в режим изменения значения параметра.

Примечание. Кнопками (вверх) и (вниз) всегда (в любых режимах и подрежимах) изменяется содержание **мигающего** индикатора.

4.2.3.5. Выход из уровня L2

Для выхода из уровня программирования L2 необходимо нажать кнопку стоя (см. рис. 31), после чего прибор перейдет в состояние «Сос» основного меню.

Если еще раз нажать кнопку то произойдет выход из режима ПРОГРАММИРОВАНИЕ и возврат в режим ОСТАНОВ или РАБОТА.

31

Рис. 31. Схема, поясняющая программирование на уровне L1

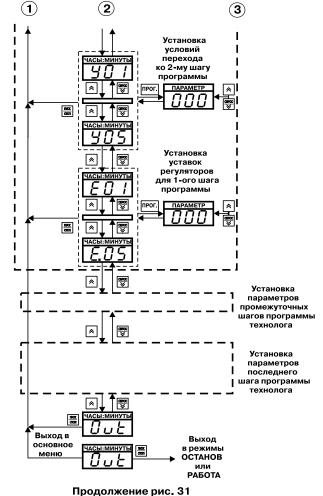
(2)

(1)

1, 2, 3 – точки соединения частей рисунка

При движении по списку параметров с помощью кнопок (вверх) или (вниз), в конце списка прибор переходит в состояние «Сис» уровня L2. Из этого состояния можно выйти в состояние «Сис» основного меню, так же, как и из любого параметра уровня L2, путем нажатия кнопки (ток)

4.2.4. Программирование на уровне L1


4.2.4.1. На рис. 31 изображена схема, поясняющая программирование на уровне L1, где задаются значения параметров программ управления (программ технолога). На индикаторе «ЧАСЫ:МИНУТЫ» отобра-жаются имена параметров программ управления, на индикаторе «ПАРАМЕТР» – значения параметров (см. прил. Д).

Примечание. Все параметры, изображенные на рис. 31, кроме двух самых верхних и двух самых нижних прямоугольников, принадлежат только одной программе управления (программетехнолога).

Группы параметров обведены мелким пунктиром; крупным пунктиром обведены параметры, относящиеся к одному шагу программы.

Переход от параметра к параметру происходит после нажатия кнопки (вверх), или (вверх), направление перехода указано на рисунке стрелкой.

Программирование прибора

4.2.4.2. Вход в уровень L1

Вход в уровень L1 осуществляется так же, как и в уровень L2 (см. пп.4.2.3.2) через код доступа Lod = 987.

После нажатия кнопки происходит переход к выбору номера программы управления (программы технолога), значения параметров которой необходимо задать или просмотреть: при этом на верхнем индикаторе «ЧАСЫ:МИНУТЫ» высвечивается имя первого параметра «*НП I*», на индикаторе «ПАРАМЕТР» мигает число шагов в программе, на нижнем индикаторе мигает «01» номер программы.

4.2.4.3. Выбор номера программы

Вход в выбранную программу осуществляется нажатием кнопки пог.

4.2.4.4. Изменение значения параметра. Запись нового значения. Отказ от записи нового значения. Просмотр значений параметров (без записи).

Изменение, запись нового значения параметра, отказ от записи, а также просмотр значений параметров без записи производятся в том же порядке, что и при программировании на уровне L2 (см. пп. 4.2.3.3, 4.2.3.4).

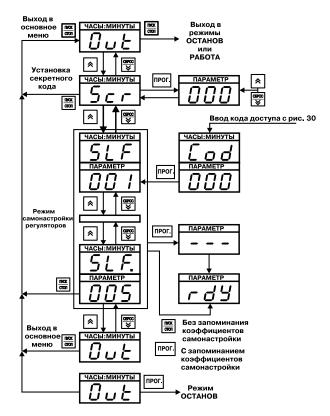


Рис. 32. Схема, поясняющая работу в уровне L3

4.2.4.5. Выход из уровня L1

Выход из уровня L1 осуществляется в том же порядке, что и выход из уровня L2 (см. пп. 4.2.3.5).

4.2.5. Программирование на уровне L3

4.2.5.1. На **рис. 33** изображена схема, поясняющая программирование на уровне L3, где задаются значения параметров автонастройки ПИД-регуляторов.

Вход в уровень L3 осуществляется также, как и в предыдущие уровни программирования (см. пп. 4.2.3.2), код доступа в уровень L3: $\mathcal{L}od = 465$.

На индикаторе «ЧАСЫ:МИНУТЫ» отображается имя программируемого параметра (5LF или 5LF.), на индикаторе «ПАРАМЕТР» – значение параметра, определяющее, для какой входной величины производится автонастройка (см. *прил.* Д).

На индикаторе «ПАРАМЕТР» во время процедуры автонастройки высвечиваются прочерки «- - -», по ее окончании появляется сообщение «- d'⅓» (сокр. англ. «ready» – готово) (см. рис. 3).

Программирование на уровне L4

4.2.6. Программирование на уровне L4

4.2.6.1. На **рис. 33** изображена схема, поясняющая программирование на уровне L4, где задаются значения параметров кали-бровки датчиков.

Вход в уровень программирования осущес-твляется так же, как и в другие уровни (см. пп. 4.2.3.2), код доступа в уровень L4: *Lod* = 343.

На индикаторе «ЧАСЫ:МИНУТЫ» отображается имя программируемого параметра («[RL»). На индикаторе «ПАРАМЕТР» – значение параметра, опреде-ляющего вид калибровки (см. прил. Д).

На индикаторе «ПАРАМЕТР» во время процедуры калибровки высвечиваются прочерки («- – -»), по ее окончании появляется сообщение «гач».

Порядок действий при калибровке приведен в *прил.* Γ .

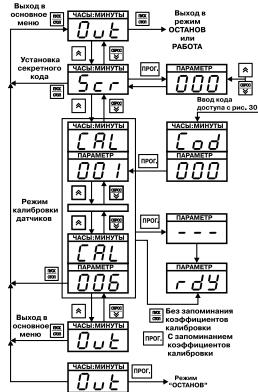


Рис. 33. Схема, поясняющая работу в уровне L4

4.2.7. Программирование прибора при помощи ПК

Существует возможность конфигурирования прибора МПР51-Щ4 с помощью персонального компьютера. Для этого следует подключить кабель для программирования (программатор) к LPT-порту компьютера и соответствующим контактам на клеммнике прибора.

При запуске программы-конфигуратора параметры автоматически считываются из прибора и записываются в компьютер. Для изменения значения какого-либо параметра достаточно ввести новое значение в соответствующее поле конфигуратора и сохранить изменения в приборе. Если требуется одинаково запрограммировать несколько приборов, достаточно один раз ввести данные и сохранить их в виде файла. После программирования необходимо отключить программатор от прибора.

Во время программирования прибор должен находиться в выключенном состоянии!

Подробная информация по программированию МПР51-Щ4 с помощью ПК находится в файле справки к программе «Конфигуратор МПР51-Щ4».

Меры безопасности

- 5.1. Прибор МПР51-Щ4 относится к классу защиты «0» по ГОСТ 12.2.007.0-75.
- 5.2. При эксплуатации и техническом обслуживании необходимо соблюдать требования ГОСТ 12.3.019-80, «Правил эксплуатации электроустановок потребителей», «Правил охраны труда при эксплуатации электроустановок потребителей».
- 5.3. На открытых контактах клеммника прибора при эксплуатации присутствует напряжение сети питания, опасное для человеческой жизни.
- 5.4. Любые подключения к прибору и работы по его техническому обслуживанию производить только при отключенном питании прибора и исполнительных механизмов.
- 5.5. К работе с прибором должны допускаться специалисты, изучившие настоящее «Руководство по эксплуатации».

ВНИМАНИЕ! Установку прибора следует производить на специализированных щитах, доступ внутрь которых разрешен только квалифицированным специалистам.

Подготовка прибора к работе

6.1. Общие указания

- 6.1.1. Перед монтажом прибора, подсоединением к нему датчиков и исполнительных устройств пользователь составляет программу (программы), по которой будет осуществляться регулирование.
- 6.1.2. Перед программированием прибора необходимо предварительно составить таблицы со списками требуемых по условиям технологического процесса параметров программирования. Примеры заполнения таблиц параметров приведены в прил. 3.
 - 6.1.3. Включить прибор в сеть; последовательность действий см. ниже (разд. 8.1).
- 6.1.4. Запрограммировать прибор, внеся в его память значения параметров из составленных ниже таблиц (пп. 6.2 6.3), используя рекомендации, приведенные в разд. 4.

ВНИМАНИЕ! При программировании сначала задаются параметры уровня L2, затем L1.

6.2. Составление таблиц для программирования

6.2.1. На первом этапе подготовки необходимо определить контуры управления, т.е. величины, которые будут регулироваться, тип исполнительных элементов, с помощью которых будут поддерживаться требуемые значения регулируемых величин.

6.2.1.1. Перечислим типовые примеры применения прибора в случаях, когда:

- управляющее воздействие является функцией времени (т.е. уставка регулируемой величины меняется на протяжении программы);
- управление осуществляется при помощи клапана (задвижки) с электромеханическим приводом (т.е. клапана, который в процессе регулирования будет занимать промежуточные положения);
- управление реализуется по *ПИД-закону* (если требуется высокая точность регулирования)
- необходимо задействовать регулятор.

В подготовленные таблицы, в соответствии с *прил.* Д, вносятся значения параметров регуляторов PD I...PDB (P.D I...PDB) уровня L2 (примеры см. в *прил.* З, табл. 3.3, 3.6, 3.13, 3.21) с учетом рекомендаций по подбору коэффициентов ПИД-регуляторов, *прил.* И.

Исходя из выбранной для регулирования величины (температуры или влажности), в таблицы, в соответствии с *прил.* Д на уровне L1, вносится значение параметра $ED \mid (E.D \mid)$ (примеры см. в *прил.* 3, табл. 3.2, 3.5, 3.9 – 3.12, 3.16 – 3.20).

6.2.1.2. В случаях, когда регулирование будет осуществляться по двухпозиционному (релейному) закону (т.е. уставка регулируемой величины постоянная на протяжении всей программы), то для управления необходимо задействовать компаратор.

В таблицы параметров, в соответствии с *прил.* Д., на уровне L1 вносятся значения параметров компараторов \mathcal{L}^{\square} \mathcal{L}^{\square} (примеры см. в *прил.* 3, 3.1, 3.4, 3.8, 3.15). Рекомендуется запрограммировать сначала один компаратор и, если требуется, далее в порядке возрастания порядкового номера).

ВНИМАНИЕ! При программировании параметра с□2 (выход компаратора) необходимо помнить, что за каждым из регуляторов жестко закреплены определенные реле (см. разд. 3.2.5). В том случае, если задействован хотя бы один

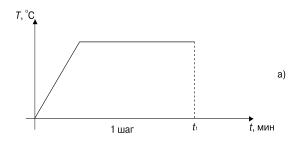
- 6.2.1.3. По окончании первого этапа необходимо проверить наличие свободных реле и, если необходимо, использовать их, например, для сигнализации.
- 6.2.2. На втором этапе подготовки следует задать значения программируемых на уровне L2 основных параметров работы прибора (см. прил. \mathcal{L}) $o\square$ $1...o\square$ 9 (примеры см. в прил. 3, табл. 3.3, 3.6, 3.13, 3.21).
- 6.2.3. Третий этап подготовки написание программы технолога (программы управления), т.е. разбиение программы на шаги с разными уставками.

ВНИМАНИЕ! Приступая к написанию программы технолога, необходимо помнить о том, что отрабатывать различные уставки температуры или влажности в течении программы способны только регуляторы. Компараторы на протяжении всей программы отрабатывают единственную уставку.

6.3. Составление программы технолога

- 6.3.1. Разбить технологический процесс на этапы, которым будут соответствовать шаги в программе управления. Для наглядности рекомендуется оформить этапы технологического процесса в виде таблицы (см. прил. 3, табл. 3.7, 3.14).
- 6.3.2. Определить число шагов в программе технолога, учитывая условия перехода на следующий шаг.

Пример 1. На **рис. 34, а** изображен график температурного режима, который задает время, необходимое для достижения уставки и выдержки при этой температуре. Очевидно, что за один шаг заданную температуру точно выдержать по времени невозможно, так как скорость выхода на уставку может варьироваться, поэтому необходимо этот процесс разбить на два шага (**рис. 34, б**). При таком разбиении температура достигает уставки за время t_1 (1-й шаг), которое не программируется, поскольку зависит от скорости выхода температуры на уставку. Пользователь программирует условие перехода с первого шага на второй по достижении заданного значения параметра; на втором шаге задает точное время выдержки.


Общее число шагов в программе определяется максимальным числом шагов одного из двух задействованных регуляторов.

Пример 2. На **рис. 35** представлены графики температурного и влажностного режимов, контролируемых двумя регуляторами: требуемое число шагов при поддержании температуры – 2, влажности – 5. Следовательно, программа должна содержать 5 шагов, и при программировании параметров для регулятора температуры необходимо задать последние 4 шага с одинаковыми уставками.

Число шагов в программе записывается в программируемом параметре $H\square$ (пример см. в прил. 3).

- 6.3.3. По числу шагов выбрать тип разбиения памяти на шаги, выбранный тип устанавливается в параметре о Дуровня L2 с учетом возможного количества программ (см. прил. Д), значение параметра о Дзаписать в таблицы (примеры см. в прил. 3, табл. 3.3, 3.6, 313, 3.21).
 - 6.3.4. Задать значение параметра Н□2. Если прибор должен остановиться после

Подготовка прибора к работе

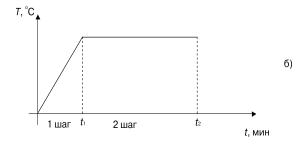


Рис. 34. Пример разбиения технологического режима на шаги: а) – неправильный вариант; б) – правильный вариант

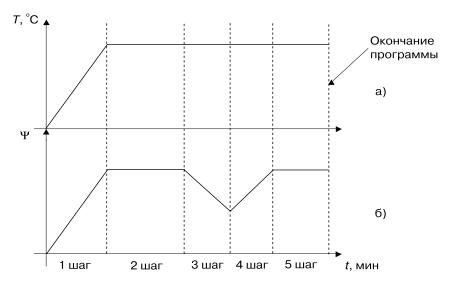


Рис. 35. Определение общего числа шагов в программе:
а) – программа 1-го регулятора; б) – программа 2-го регулятора

возвращаться прибор. Частный случай – программа, состоящая из одного шага, которая выполняется до ее остановки вручную; в этом случае: Н□ != 001, Н□ ?= 001.

6.3.5. Условия перехода с текущего шага на следующий, задаваемые параметрами ५० /...५०५ (см. прил. Д), вписать в таблицы (примеры см. в прил. З, табл. 3.2, 3.5, 3.9–3.12, 3.16–3.20).

Автоматический переход с шага на шаг может выполняться либо по истечении заданного времени, либо когда одна из управляемых величин достигает значения, заданного в параметре 403. либо при сочетании этих условий.

- 6.3.6. Для каждого шага задать значения параметров ED2...ED5 (E.D2...ED5) для первого (второго) регуляторов (примеры см. в *прил.* 3, табл. 3.2, 3.5, 3.9–3.12, 3.16–3.20).
- 6.2.3.7. Если для управления дополнительным оборудованием будут задействованы транзисторные ключи в импульсных режимах, необходимо задать эти режимы с помощью в программируемых параметров FD2...F I5 (F.D2...F. I5), (см. прил. Д), далее для каждого шага задать в параметрах PD2...PD режим работы транзисторных ключей (примеры см. в прил. 3, табл. 3.2, 3.5, 3.9 3.12, 3.16 3.20).
- 6.3.8. Значения параметров цифровых фильтров $d\mathbb{C}$ $1...d\mathbb{C}$ 5, а также параметров коррекции показаний термометров lc 1...3c 1, lc2...3c2, lc3...3c3 (см. прил. \mathcal{A}) задаются на заводе-изготовителе. В случае необходимости (при действии помех и погрешностях измерения входных величин) пользователь может откорректировать эти параметры (см. пп. 3.2.1.3, 3.2.1.5).
- 6.3.9. Если предполагается работа прибора по нескольким программам, все вышеперечисленные действия следует повторить для каждой программы.
- 6.4. Если в результате сбоя прибора или ввода некорректной программы дальнейшая работа невозможна, необходимо установить параметры МПР51 в значения «по умолчанию». В этом случае программы пользователя будут удалены. Для этого необходимо отключить питание прибора, нажать кнопку «ПРОГ» и включить питание прибора. Ввести пароль «777» и нажать кнопку «ПРОГ». После этого прибор будет готов к дальнейшему программированию.

Монтаж прибора на объекте

7.1. Монтаж прибора

7.1.1. Определить место для установки прибора. При выборе места следует помнить, что при размещении прибора вблизи мощных пускателей или реле возможны сбои или неустойчивая работа прибора.

7.1.2. Подготовить на щите управления посадочное место для установки прибора в соответствии с размерами, приведенными в *прил. А*. Поскольку на корпусе прибора имеются вентиляционные щели, конструкция щита управления должна обеспечивать защиту прибора от попадания в него влаги, грязи и посторонних предметов.

7.1.3. При размещении прибора следует помнить, что на открытых контактах его клеммника в период эксплуатации присутствует напряжение 220 В частотой 50 Гц, опасное для человеческой жизни. Прибор следует устанавливать на специализированных щитах, доступ внутрь которых разрешен только квалифицированным специалистам.

7.2. Монтаж внешних связей

7.2.1. Общие требования

7.2.1.1. Питание прибора следует производить от сетевого фидера напряжением 220 В частотой 50 Гц, не связанного непосредственно с питанием мощного силового оборудования. Во внешней цепи рекомендуется установить выключатель питания, обеспечивающий отключение прибора от сети и плавкие предохранители, рассчитанные на ток 1,0 А.

ВНИМАНИЕ! Питание каких-либо устройств от сетевых контактов прибора запрещается.

7.2.1.2. Соединение прибора с датчиками температуры производить при помощи трехпроводной линии, жилы которой по отношению друг к другу имеют одинаковое сопротивление. Длина линии связи должна быть не более 100 метров, а сопротивление каждой ее жилы не более 15,0 Ом.

Примечание. Допускается соединение датчиков температуры с прибором и по двухпроводной линии, но при условии обязательного выполнения работ, перечень которых приведен в *прил.* В. Длина линии связи при этом также должна быть не более 100 м, а сопротивление каждой ее жилы не более 15,0 Ом.

ВНИМАНИЕ! При подключении к выходным реле прибора цепей управления исполнительными устройствами, а также цепи питания напряжением 220 В следует иметь в виду, что допустимое максимальное напряжение, подводимое к контактам клеммника, не может превышать 250 В переменного тока.

7.2.1.3. Линию связи между адаптером и прибором желательно выполнять экранированной парой проводов длиной не более 1000 метров.

7.2.2. Указания по монтажу

7.2.2.1. Подготовить кабели для соединения прибора с датчиками, исполнительными механизмами и внешними устройствами, а также с источником питания 220 В частотой 50 Гц. Для обеспечения надежности электрических соединений рекомендуется использовать кабели с медными многожильными проводами, концы которых перед подключением следует тщательно зачистить и облудить. Зачистку жил кабелей необходимо выполнять с таким расчетом, чтобы их оголенные концы после подключения к прибору не выступали за пределы клеммника. Сечение проводов, вставляемых в отверстие клеммника, не должно

Монтаж внешних связей

превышать 0,75 мм².

7.2.2.2. При прокладке кабелей следует выделить в самостоятельную трассу (или несколько трасс) линии связи, соединяющие прибор с датчиками, располагая ее (или их) отдельно от силовых кабелей, а также кабелей, создающих высокочастотные и импульсные помехи. Для защиты входных устройств прибора МПР51-Щ4 от влияния промышленных электромагнитных помех линии связи прибора с датчиками следует экранировать. В качестве экранов могут быть использованы как специальные кабели с экранирующими оплетками, так и заземленные стальные трубы подходящего диаметра. При использовании экранированных кабелей максимальный защитный эффект достигается при соединении их экранов с общей точкой схемы прибора (см. прил. Б, рис. Б.1, контакты 30...38).Однако в этом случае необходимо убедиться, что экранирующие оплетки кабелей на протяжении всей трассы надежно изолированы от металлических заземленных конструкций. Если указанное условие по каким-либо причинам не выполняется, то экраны кабелей следует подключить к заземленному контакту в щите управления.

ВНИМАНИЕ! Соединение общей точки схемы прибора с заземленными частями объекта запрещается.

7.2.3. Подключение прибора

Подключение прибора следует выполнять по соответствующим схемам, приведенным в *прил.* Б, соблюдая при этом изложенную ниже последовательность действий.

- 1. Произвести подключение прибора к исполнительным механизмам и внешним устройствам, а также к источнику питания 220 В частотой 50 Гц;
 - 2. Подключить линии связи «прибор датчики» к первичным преобразователям;
 - 3. Подключить линии связи «прибор датчики» к входам МПР51-Щ4;
- 4. На неиспользуемые при работе прибора измерительные температурные входы установить резисторы с сопротивлением, примерно равным сопротивлению используемых на других входах датчиков температуры (т.е. около 50 или 100 Ом), по схеме, указанной в прил. Б, рис. Б.1.
- 5. На неиспользуемые входы датчиков положения установить по паре резисторов на каждый вход с одинаковым сопротивлением (с номиналом в интервале от 50 до 3000 Ом) по схеме, указанной в *прил. Б*, рис. Б.2.

После выполнения указанных действий прибор готов к работе.

ВНИМАНИЕ! Для защиты входных цепей прибора МПР51-Щ4 от возможного пробоя зарядами статического электричества, накопленного на линиях связи «прибор – датчики», перед подключением к клеммнику прибора их жилы следует на 1 ...2 секунды соединить с винтом заземления щита.

Работа с прибором

8.1. Включение прибора

8.1.1. После включения прибора в сеть 220 В в течение нескольких секунд мигают все индикаторы, затем мигание прекращается. Если на верхнем индикаторе появляется сообщение «RII I_{in} , следует нажать кнопку $\boxed{\frac{component}{\mathbf{y}}}$.

Прибор находится в режиме ОСТАНОВ, для исполнения автоматически установлена первая программа и первый шаг.

8.1.2. Если прибор был выключен несколько часов назад (1...5 ч), при включении (если на верхнем индикаторе нет сообщения «РО I») через несколько секунд мигание индикаторов, за исключением верхнего «ЧАСЫ:МИНУТЫ», прекратится. Прибор будет находиться в том режиме, в котором он находился при выключении: если прибор находился в режиме РАБОТА, то он продолжит выполнение программы; если прибор находился в режиме ОСТАНОВ, то при включении он также окажется в режиме ОСТАНОВ. Мигание верхнего индикатора «ЧАСЫ:МИНУТЫ» означает, что был перерыв в питании. Прекратить мигание индикатора следует нажатием кнопки

8.2. Выбор программы (шага) для исполнения

8.2.1. Чтобы выбрать программу для исполнения, надо, находясь в режиме ОСТАНОВ или РАБОТА, нажать кнопку [пол.].

На верхнем индикаторе появится мигающая надпись «РгГ».

- 8.2.2. Нажать кнопку прог. еще раз. На самом нижнем индикаторе начнет мигать номер программы, установленной для исполнения (или уже исполняющейся, если прибор находится в режиме РАБОТА).
 - 8.2.3. Кнопками 🔊 (вверх) и 👺 (вниз) установить номер нужной программы.
- 8.2.4. Если программа будет запускаться с начала (т.е. с первого шага), надо нажать кнопку то два раза. Выбранная программа готова к исполнению.
- 8.2.5. Если выбор программы для исполнения происходил в режиме РАБОТА, то сразу начнется исполнение выбранной программы.

Если выбор программы для исполнения происходил в режиме ОСТАНОВ, то для запуска выбранной программы надо нажать кнопку [mox | con |

- 8.2.6. Если требуется начать исполнение программы не с первого шага, то после установки номера нужной программы (см. пп. 8.2.3), следует нажать кнопку программы (см. пп. 8.2.3). Следует нажать кнопку программы (см. пп. 8.2.3).
 - 8.2.7. Кнопками 🔊 (вверх) и 👺 (вниз) установить номер нужного шага.
 - 8.2.8. Нажать кнопку $\frac{1000}{1000}$ два раза. Шаг для исполнения установлен.
- 8.2.9. Если выбор шага для исполнения происходил в режиме РАБОТА, то начнется исполнение новой программы с установленного шага.

Если выбор шага для исполнения происходил в режиме ОСТАНОВ, то для запуска новой программы с установленного шага надо нажать кнопку [mck con].

Пуск и останов прибора

8.3. Пуск и останов прибора

8.3.1. Если прибор находится в режиме ОСТАНОВ, то:

- горит светодиод «СТОП»;
- точка на индикаторе «ЧАСЫ:МИНУТЫ» не мигает (отсчет текущего времени программы не происходит).

Чтобы запустить установленную для выполнения программу (шаг), надо нажать кнопку [mox]. Светодиод «СТОП» погаснет, точка на индикаторе «ЧАСЫ:МИНУТЫ» замигает (начнется отсчет текущего времени программы (управления технолога)).

8.3.2. Если прибор находится в режиме РАБОТА, то:

- выполняется установленная программа управления;
- мигает точка на индикаторе «ЧАСЫ:МИНУТЫ»;
- не горит светодиод «СТОП»;
- на индикаторе «ШАГ» индицируется номер выполняемого шага;
- на индикаторе «ВЛАЖНОСТЬ, %» индицируется номер выполняемой программы или значение влажности (в зависимости от того, что назначено потребителем для вывода на индикатор «ВЛАЖНОСТЬ, %»).

Чтобы остановить выполнение программы управления (программы технолога), надо нажать кнопку $\frac{mex}{cool}$. Произойдет переход в режим ОСТАНОВ.

Для сброса времени необходимо нажать кнопку

8.4. Просмотр значений параметров

8.4.1. Просмотр измеряемых параметров (текущих значений температуры от трех температурных датчиков) осуществляется в режимах ОСТАНОВ и РАБОТА. Таким же образом происходит просмотр значения относительной влажности.

Значения температуры, полученные по трем каналам измерения ($T_{\text{сух}}$, $T_{\text{влаж}}$, $T_{\text{прод}}$) и положение задвижек (K3P1 и K3P2) выводятся на индикатор «ПАРАМЕТР» поочередно – автоматически или вручную (путем нажатия кнопки (верх)), в зависимости от значения программируемого параметра \mathfrak{o} (см. $\mathfrak{n}\mathfrak{p}\mathfrak{u}\mathfrak{n}$. \mathcal{L}), устанавливаемого на уровне L2.

Значение относительной влажности выводится на индикатор «ВЛАЖНОСТЬ» (путем установки параметра $o \square 3$ (уровень L2) на значение «001» (см. прил. Д).

8.4.2. Просмотр значений программируемых параметров происходит в режиме ПРОГРАММИРОВАНИЕ (см. разд. 4).

В режиме ПРОГРАММИРОВАНИЕ на индикатор «ЧАСЫ:МИНУТЫ» выводится имя параметра, значение параметра выводится на индикатор «ПАРАМЕТР».

8.5. Запись значений параметров

Запись новых значений программируемых параметров происходит в режиме ПРОГРАММИРОВАНИЕ (см. п. 4.2.3.3). Кнопками (вверх) (вниз) устанавливается новое значение, при нажатии кнопки происходит внесение нового значения в память прибора.

Работа с прибором

8.6. Индикация аварийных ситуаций

8.6.1. В процессе работы прибора могут возникать аварийные ситуации.

Все аварийные ситуации можно разделить на:

- аварийные ситуации на входе прибора;
- аварийные ситуации, возникшие из-за сбоя в работе прибора.
- 8.6.2. Аварийные ситуации на входе прибора создаются, когда управляющая величина на входе выходит за допустимые пределы:
 - для температурных датчиков

медных (ТСМ) – это значение температуры ниже минус 50 °C и выше плюс 200 °C; платиновых (ТСП) – это значение температуры ниже минус 80 °C и выше плюс 750 °C:

датчиков положения задвижки – значения менее 0 % и более 100 %.

При выходе управляемых (измеренных) величин за указанные пределы срабатывает реле «АВАРИЯ» и загорается светодиод «АВАРИЯ».

В диапазонах значений температур $-100...-50\,^{\circ}$ С и $+200...+750\,^{\circ}$ С для ТСМ и в диапазонах $-100...-80\,^{\circ}$ С и $+750\,^{\circ}...+850\,^{\circ}$ С для ТСП на индикаторе отображается температура, хотя это соответствует аварийной ситуации. На то, что ситуация аварийная, указывает мигание показаний измеренной температуры на индикаторе «ПАРАМЕТР».

За пределами диапазонов значений –100...+750 °C для TCM и –100...+850 °C для TCП на индикаторе «ПАРАМЕТР» индицируются мигающие прочерки «- – -».

Когда положение задвижки выходит за пределы диапазона значений 0...100 %, измеренное значение продолжает индицироваться, на то, что ситуация аварийная, указывает мигание показаний измеренного значения на индикаторе «ПАРАМЕТР».

- 8.6.3. При возникновении аварийных ситуаций, вызванных сбоями в работе прибора, на индикаторе «ЧАСЫ:МИНУТЫ» индицируются следующие сообщения:
 - Я□ !- оперативная память прибора не содержит упорядоченной информации;
- AD3 параметр условия перехода к следующему шагу не находится в допустимых пределах;
 - ЯДЧ величина на входе компаратора не находится в допустимых пределах;
 - *№* время шага истекло и превысило 63 часов;
- RD5 появляется после перерыва питания, если было установлено значение параметра oD7 = 005, а также если управляемая величина вышла за пределы, установленные в параметре oD8;
 - *R*07 сбой режима работы прибора;
- ADB появляется после отключения питания в случае аварийного останова со срабатыванием реле «АВАРИЯ» (если было установлено значение параметра aDT = 002):
 - *RD9* величина на входе регулятора не находится в допустимых пределах.

При появлении одного из указанных сообщений замыкается реле «АВАРИЯ» и загорается светодиод «АВАРИЯ». Если прибор в это время находится в режиме РАБОТА и выполняет программу (управления технолога), то происходит его переход в режим ОСТАНОВ, загорается светодиод «СТОП» и выполнение программы (управления технолога) прекращается.

Индикация аварийных ситуаций

Сообщение «ЯП I» появляется, если в оперативной памяти прибора нарушен должный порядок содержащейся там информации. Это происходит при включении прибора после длительного пребывания в выключенном состоянии, а также вследствие действия сильной импульсной помехи во время работы прибора.

Сообщения «ЯСЭ», «ЯСУ», «ЯСУ» появляются, когда измеренная (или вычисленная) величина, используемая программой управления, оказывается вне допустимых пределов. Это возможно как в результате действительного выхода управляемой величины за допустимые пределы, так и в результате сбоя работы прибора (например, после мощной помехи).

8.6.4. В некоторых случаях, когда аварийная ситуация возникает на входе, не используемом программой управления, прибор продолжает выполнение программы управления, не переходя в режим ОСТАНОВ. При этом замыкается реле «АВАРИЯ» и загорается светодиод «АВАРИЯ». Если аварийная ситуация на входе проходит, реле «АВАРИЯ» размыкается и светодиод «АВАРИЯ» гаснет.

8.7. Настройка ПИД-параметров регулятора

Если какой-либо регулятор прибора будет использоваться как ПИД-регулятор, следует произвести настройку его коэффициентов на объект, которым он будет управлять. Значения коэффициентов пользователь может определить либо в режиме АВТОНАСТРОЙКА (см. прил.~И, п. И.1), либо ручной настройкой по методике, изложенной в прил.~И, п. И.2.

ВНИМАНИЕ! Процедуру самонастройки ПИД-регулятора возможно производить только в режиме ОСТАНОВ.

8.8. Код доступа в уровень программирования

Для защиты параметров регулирования от несанкционированного изменения в приборе предусмотрен специальный «параметр секретности», значение которого устанавливается пользователем в программируемом параметре «5сг» (см. п. 4.2).

При 5cr = 001 вход в уровень возможен только через пароль (код доступа), значения которого устанавливаются в параметре «Eod». Значения кодов для каждого уровня приведены в разд 4.

При 5cr = 002 вход в уровень осуществляется без установки пароля, путем нажатия кнопки $\frac{1}{1000}$, для просмотра значений параметров без изменения их значения.

При 5с = 003 вход в уровень осуществляется без установки пароля, после нажатия кнопки после просмотра значений параметров и их изменения.

Техническое обслуживание

9.1. Техническое обслуживание прибора МПР51-Щ4 проводится обслуживающим персоналом постоянно в процессе эксплуатации в соответствии с «Правилами эксплуатации электроустановок потребителей», не реже одного раза в 6 месяцев и включает выполнение следующих операций:

- очистку корпуса прибора, а также его клеммников от пыли, грязи и посторонних предметов;
- проверку качества крепления прибора к щиту управления;
- проверку качества подключения внешних связей к клеммникам.

Обнаруженные при осмотре недостатки следует немедленно устранять.

При выполнении работ по техническому обслуживанию прибора соблюдать меры безопасности, изложенные в разд. 5.

Раздел 8

Маркировка и упаковка

10.1. Маркировка прибора осуществляется согласно ГОСТ 26828-86.

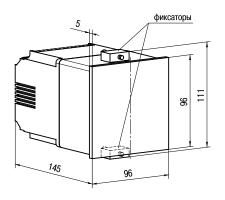
На прибор наносятся:

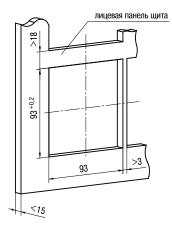
- обозначение прибора и вариант его модификации;
- наименование предприятия-изготовителя;
- штрих-код;
- год изготовления;
- напряжение питания и потребляемая мощность;
- знак соответствия требованиям нормативной документации.

10.2. Упаковка прибора производится по ГОСТ 23170-78 в потребительскую тару, выполненную из гофрированного картона.

Транспортирование и хранение

11.1. Прибор должен транспортироваться в упаковке при температуре от –25 °C до +55 °C и относительной влажности воздуха не более 95 % (при 35 °C и более низких температурах без конденсации влаги).


- 11.2. Транспортирование допускается всеми видами закрытого транспорта.
- 11.3. Транспортирование на самолетах должно производиться в отапливаемых герметизированных отсеках.
- 11.4. Прибор должен храниться в упаковке в закрытых складских помещениях при температуре от 0 °C до + 60 °C и относительной влажности воздуха не более 95 % (при 35 °C и более низких температурах без конденсации влаги).


Воздух помещения не должен содержать агрессивных паров и газов.

50

Приложение А (справочное)

Габаритный чертеж

Приложения

Приложение Б (справочное)

RS-232

реле 3 реле 2 реле 1

Схема подключения прибора

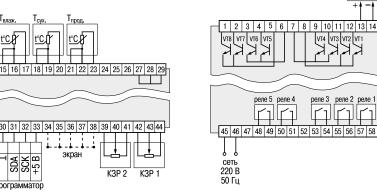
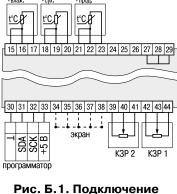



Рис. Б.2. Подключение

реле 5 реле 4

измерительных

датчиков и датчиков

положения задвижек

транзисторных ключей и выходных устройств

Примечание. Клеммы 24...29 предназначены для служебного пользования. Подключение к ним любых устройств запрещено.

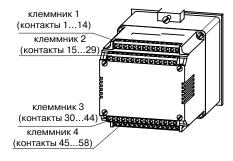


Рис. Б.З. Вид прибора сзади

Приложение В (справочное)

Соединение датчиков температуры с прибором по двухпроводной схеме

В.1. Подключение термопреобразователей к прибору по двухпроводной схеме (рис. В.1) проводится в случае, когда использование трехпроводной схемы (рис. В.2) невозможно (например, при установке прибора на объектах, оборудованных ранее проложенными монтажными трассами).

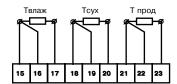


Рисунок В.1 - Соединение датчиков по трехпроводной схеме.

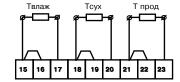


Рисунок В.2 - Соединение датчиков по двухпроводной схеме.

- В.2. Перед началом работы установить перемычки между контактами 15 и 16 (см. **рис. В.1**) клеммника прибора, а двухпроводную линию подключить, соответственно, к контактам 15 и 17.
- В.З. Далее подключить к противоположным от прибора концам линии связи «датчик прибор» термопреобразователя магазин сопротивлений с классом точности не ниже 0,05 (например, MCP-63).
- В.4. Установить на магазине сопротивлений значение, равное сопротивлению термопреобразователя при температуре 0 $^{\circ}$ C (50 или 100 Ом, в зависимости от типа датчика).
- В.5. Подать на прибор питание и через 15 20 с по показаниям цифрового индикатора $T_{\tiny влаж}$ определить величину отклонения температуры от 0 °C.
- В.6. Задать значение коррекции «сдвиг характеристики» в параметре Зс (см. прил. Д), равное по величине показаниям прибора, но взятое с противоположным знаком (знак определяется в параметре Зс2).
- В.7. Проверить правильность заданного значения коррекции, для чего, не изменяя значения сопротивления на магазине, перевести прибор в режим измерения температуры и убедиться, что при этом его показания равны 0 ± 0.2 °C.
- В.8. Отключить питание прибора, отсоединить линию связи «датчик прибор» от магазина сопротивлений и подключить ее к термопреобразователю.
- В.9. Аналогичным образом подключить к прибору и ввести значения соответствующих коррекций для датчиков $T_{\rm суx}$ и $T_{\rm прод}$, которые необходимо соединить с прибором по двухпроводной схеме.

ВНИМАНИЕ! Все работы по подключению датчиков выполнять при обесточенном приборе.

В.10. После выполнения указанных действий прибор готов к работе.

Приложения

Приложение Г (обязательное)

Калибровка входов датчиков температуры и входов датчиков положения

Г.1. Калибровка входов датчиков температуры

Г.1.1. Общие положения

Калибровка должна производится только высококвалифицированными специалистами метрологических служб при увеличении погрешности измерения входных параметров сверх установленных значений.

Процедуру калибровки входов датчиков температуры возможно производить только в режиме ОСТАНОВ.

Канал, подлежащий калибровке ($T_{\text{сух}}$, $T_{\text{влаж}}$, $T_{\text{прод}}$), выставляется путем нажатия кнопки (вверх). При этом загорается соответствующий зеленый светодиод.

- Г.1.2. Порядок калибровки датчиков температуры.
- Г.1.2.1. Выставить канал, подлежащий калибровке (например, T_{car}).
- Г.1.2.2. Установить параметры коррекции «сдвиг характеристики» датчиков температуры (/с /...3с /, /с2...3с2, /с3...3с3 (см. прил. Д)) равными нулю.
- Г.1.2.3. Подключить ко входу прибора вместо датчика магазин сопротивлений типа Р4831.
- Г.1.2.4. Установить на магазине сопротивлений R = 50 Ом (при использовании датчиков сопротивлением 50 Ом) или R = 100 Ом (при использовании датчиков сопротивлением 100 Ом).
- Г.1.2.5. Войти в уровень L4 (см. разд. 4) и выставить значение параметра $\mathit{ERL} = 001$ (см. $\mathit{прил}$. Д).
- Г.1.2.6. Нажав кнопку [рег], запустить процедуру калибровки, при этом на индикаторе «ПАРАМЕТР» появятся прочерки «- -», через 10...15 с по окончании процедуры калибровки появится сообщение «сdЧ», свидетельствующее о завершении вычисления коэффициента калибровки.
- Г.1.2.7. Снова нажать кнопку [mot.], при этом вычисленное значение коэффициента калибровки будет внесено в память прибора.

Если вместо кнопки $\frac{1}{1000}$ нажать кнопку $\frac{1}{1000}$, внесение значений коэффициентов в память не произойдет.

- Г.1.2.8. После двойного нажатия кнопки $\frac{mex}{cron}$ произвести выход из режима ПРОГРАММИРОВАНИЕ в исходный режим. На индикаторе «ПАРАМЕТР» / T_{cyx} будет высвечиваться «000».
- Г.1.2.9. Для того, чтобы использовать вычисленный коэффициент калибровки для всех трех термометрических входов, надо установить значение параметра c = 0.01.
- Г.1.2.10. Для того, чтобы использовать коэффициент калибровки отдельно для $T_{\text{сух}}$, $T_{\text{влаж}}$ надо установить значение параметра $\varepsilon = 000$. Для $T_{\text{прод}}$ всегда используется тот же коэффициент калибровки, что и для $T_{\text{сух}}$.

Г.2. Калибровка входов датчиков положения

Для калибровки входов датчиков положения необходимо выполнить следующие действия.

- Г2.1. Выставить канал коррекции КЗР1 на индикаторе путем нажатия кнопки (вверх). Загорится соответстсвующий зеленый светодиод.
- Г2.2. Установить задвижку с датчиком положения задвижки КЗР1 в положение полного закрытия.
- Г2.3. Войти в режим ПРОГРАММИРОВАНИЕ. в уровень L4 (см. разд. 4) и установить значение параметра ERL = 003 (см. прил. Д).
- Г2.4. Нажав кнопку | прот. |, запустить процедуру калибровки, при этом на индикаторе «ПАРАМЕТР» появятся прочерки «- - -», через 10...15 с. после завершения процедуры, на индикаторе «ПАРАМЕТР» появится сообщение «гаУ», свидетельствующее об окончании вычисления коэффициента калибровки.
- Г2.5. Нажав кнопку | пол. |, внести в память прибора значение вычисленного коэффициента калибровки, соответствующее полному закрытию задвижки (0 %).

Если вместо кнопки пол. нажать кнопку пол., внесение в память вычисленного значения коэффициента калибровки не произойдет.

- Г2.6. Установить задвижку с датчиком положения КЗР1 в положение полного открытия.
 - Г2.7. Установить значение параметра ERL = 004.
- Г2.8. Нажать кнопку пол., на индикаторе «ПАРАМЕТР» появятся прочерки «- -», через 10...15 с появится сообщение «гаУ», свидетельствующее о завершении вычисления клэффициента калибровки.
- Г2.9. Нажав кнопку | пол. |, внести в память прибора вычисленное значение коэффициента калибровки, соответствующее полному открытию задвижки (100 %). внесение вычисленного значения коэффициента калибровки в память не произойдет.
- Г2.10. Калибровка датчика положения задвижки КЗР2 производится в том же порядке с учетом того, что калибровка полностью открытого положения (0 %) датчика производится при значении параметра *LRL* = 005, а калибровка полностью закрытого положения (100 %) – при значении параметра ERL = 006 (см. прил. Д).

Приложения

Обознач.

Приложение Д (обязательное)

Программируемые параметры Название

Допустимые Комментарии

значения

▶ У	▶ Уровень L1. Параметры программы технолога					
Параметры программ						
HD (Количество шагов в программе	001	099 —			
	Номер шага программы, который является начальным шагом цикла метры компараторов С1 С4	000	— —			
c0 (Входная величина компаратора	001 002 003 004 005 006	2 Температура камеры (сухого термометра, $T_{\text{сух.}}$), [град.] 3 Температура влажного термометра ($T_{\text{влаж.}}$), [град.] 4 $\Delta T = T_{\text{сух.}} - T_{\text{прод.}}$, [град.] 5 Относительная влажность Ψ , [%] 6 Входная величина 1-го регулятора			
	Состояние выхода компаратора	005 006) Выход компаратора отключен 004 14-е реле 5 5-е реле, светодиод «Авария» не горит 6 5-е реле, светодиод «Авария» горит			
c03	1-я (верхняя) уставка компаратора	-99+9	999[град.] [%]			
c 🛮 4	2-я (нижняя) уставка компаратора	-99+9 099	999[град.] [%]			
c05	Логика работы компаратора	000	Реле компаратора замыкается при значении контролируемой величины, большем верхней уставки, а размыкается — при меньшем нижней уставки			
		001	Реле замыкается при значении величины, меньшем ниж ней уставки, а размыкается — при большем верхней уставки			
		002	 Реле замыкается при значении контролируемой величи ны, находящемся между нижней и верхней уставками 			
		003	В Реле замыкается при выходе значения контролируемой величины за пределы, заданные верхней и нижней уставками			
c05	Блокировка срабатывания компаратора до 1-го достижения уставки	000				
	в начале программы	001	Вкл.			
07ء	Блокировка срабатывания компаратора	000				
	до 1-го достижения уставки в начале ш	ага 001	Вкл.			
c08	Блокировка срабатывания компаратора до нажатия кнопки «СБРОС»	000 001				

Обознач.	Название Д	опустимы значения	•
<i>∟09</i> Время	я задержки срабатывания		
	ратора я задержки отпускания	000999	9 [c]
	ратора	000999) [c]
	Режимы 1-го8-го транзисторных ключей	000	Ключ не замкнут (транзистор закрыт)
	на данном шаге	001	Ключ замкнут непрерывно (транзистор открыт)
		002015	114-й импульсные режимы работы ключа, задаваемые в параметрах F02 F15 (F.02 F.15)
<i>ЧП !</i> Услов	вие перехода к следующему шагу	, 000	По достижении установленного в параметре УО2
			значения температуры или влажности
		001	По достижении установленного в параметрах У□Чи У□5 времени
		002	По выполнении условий 000 и 001
		003	По выполнении условий 000 или 001
	ия перехода к следующему шагу мпературам или влажности	001 (002 003 (004 005 (006 007 (008 009 (010	$T_{\text{сух.}} > T_{\text{уст. сух.}} (T_{\text{сух.}} < T_{\text{уст. сух.}}),$ [град.] і) $T_{\text{влаж.}} > T_{\text{уст. влаж.}} (T_{\text{влаж.}} < T_{\text{уст. влаж.}}),$ [град.] і) $\Delta T > \Delta T_{\text{уст.}} (\Delta T_{\text{.}} < \Delta T_{\text{уст.}}),$ [град.]
	ка условия перехода дующему шагу	-99+99	99 в диапазоне измерения датчиков
	мпературам или влажности		
<i>УОЧ</i> Длите	ельность шага	063	[4]
<i>90</i> 5 Длите	ельность шага	059	[мин]
Параметр	ы 1-го (2-го) регуляторов на	данном ц	иаге
E0 1(E.0 1)	Входная величина регулятора	001	Температура продукта, [град.]
		002	Температура сухого термометра в камере, [град.]
		003	Температура влажного термометра, [град.]
		004	$\Delta T = T_{\text{сух.}} - T_{\text{прод.}}$, [град.]
		005	Относительная влажность Ψ , [%]
E02 (E.02)	Уставка входной величины	-99+99	99 [град.], пользователь задает только целую часты
	(целая часть) — XXX.	099	XXX. уставки XXX.X
E03 (E.03)	Уставка входной величины (дробная часть)— .00X	00.000	[%] .9 [град.], пользователь задает только дробную час .X уставки XXX.X
	William Court (Mark)	00.100	
E04(E.04)	Скорость выхода на уставку	00.099	.9 [град/мин]; [%/мин]
E05 (E.05)	Знак скорости выхода на уставку	000	Положительный (рост входной величины)
		001	Отрицательный (снижение входной величины)

Приложения

L	прилож	Спия		
	Обознач.	Название	Допустимые значения	е Комментарии
ı	▶ Уровень I	.2. Общие параметры		
	5_г Параме	етр секретности	002 E г 003 E	Вход в уровень только через пароль Вход в уровень по паролю для записи без установкі пароля для чтения Вход в уровень без установки пароля
ı	Параметры	импульсных режимов тр		для чтения и записи х ключей
١		Длительность импульса 114-го режимов	000999	
	F.02 F. 15	Длительность паузы между импульсами 114-го режимов	000999	[c]
l	Коррекция	показаний термометров		
l	Сдвиг характ	еристики датчика		
	<i>2∟</i> ∤ для сух	мометра продукта ого термометра эжного термометра	00051.1	Прибавляется к измеренному значению, [ед. измер.]
	<i>1с2</i> для тер 2с2 для сух	арактеристики имометра продукта ого термометра ижного термометра	000 001	Положительный Отрицательный
	<i>1∟3</i> для тер <i>2∟3</i> для сух	аклона характеристики датчи мометра продукта ого термометра ижного термометра	00025.5	Умножается на измеренное значение, [% от измер. велич.]
	<i>1∟</i> Ч для тер <i>2∟</i> Ч для сух	характеристики имометра продукта ого термометра ижного термометра	000 001	Положительный Отрицательный
l	Параметры	цифровых фильтров		
	d0 l d03	Постоянные времени цифро фильтров влажного, сухого термометров и термометра продукта, соответственно	овых 000064	4 [c]
l	<i>4</i> 04	Постоянная времени фильтр относительной влажности	oa 00006	64 [c]
	d05, d06	Постоянные времени фильтр датчиков положения задвижек 1 и 2	ров 000064	4 [c]
	Основные г	араметры работы прибор	oa	
	oD (Тип температурных датчиков подключаемых к прибору	001 002	$ \begin{array}{lll} \text{TCM } [50\text{M}/100\text{M}] & W_{100} = 1,426 \\ \text{TC\Pi } [50\Pi/100\Pi] & W_{100} = 1,385 \\ \text{TC\Pi } [50\Pi/100\Pi] & W_{100} = 1,391 \\ \text{TCM } [50\text{M}/100\text{M}] & W_{100} = 1,428 \\ \end{array} $

58

			приложения
o02	Индикация десятых долей		
	измеренной величины	000	Индикация без десятых долей
	на индикаторе «ПАРАМЕТР»	001	Индикация с десятыми долями
оОЗ	Управление индикатором	000	Индикатор указывает номер программы
	«ВЛАЖНОСТЬ»	001	Индикатор указывает влажность
οΩЧ	Количество индицируемых	001	Индицируется только $T_{\text{cvx.}}$
	параметров на индикаторе	002	Индицируется $T_{\text{сух.}}$ и $T_{\text{влаж.}}$
	«ПАРАМЕТР»	002	Индицируется $T_{\text{сух.}}$ и $T_{\text{влаж.}}$ И $T_{\text{прод.}}$
	TO A 7 WILLIAM	004	Индицируется $T_{\text{сух.}}$, $T_{\text{влаж.}}$ и положение задвижки
		005	Индицируется $T_{\text{сух.}}$, $T_{\text{влаж.}}$, $T_{\text{прод.}}$ и положение задвижки Индицируется $T_{\text{сух.}}$, $T_{\text{влаж.}}$, $T_{\text{поод.}}$, полож. задвижек 1 и 2
oØ5	Использование коэффициентов	000	Используется коэфф. калибровки отдельно для
	калибровок		$T_{ m cyx.}$ (и $T_{ m npog.}$) и отдельно для $T_{ m влаж.}$
		001	Используется коэфф. калибровки T_{cvx} , для всех
			3-х термометров
o05	Психрометрический коэфф., 06	4080	Зависит от внешних условий
	для вычисления влажности		
o07	Поведение прибора после	001	Продолжение работы с момента пропадания питания
	появления пропавшего	002	Аварийный останов (со срабатыванием реле 5)
	напряжения сети питания 220 В	003 004	Неаварийный останов (переход в режим «Останов»)
		004	Продолжение, если $T_{\text{сух.}}(T_{\text{влаж.}}, T_{\text{прод.}}) < T_{\text{откл.}} - T_{\text{вкл.}},$ если $>$, то аварийный останов ¹
		005	Продолжение, если $T_{\text{сух.}}(T_{\text{влаж.}}, T_{\text{прод.}}) < T_{\text{откл.}} - T_{\text{вкл.}},$
			если >, то неаварийный останов
	$T_{\text{OTKU}} - T_{\text{BKU}}$		
<i>₀08</i>	Значение $\frac{T_{\text{откл}} - T_{\text{вкл}}}{T_{}} \cdot 100\%$, (099	[%]
	• откл		
	необходимое для задания		
	значений 004, 005 предыдущего		
	значений 004, 005 предыдущего параметра <i>1</i> 7		
o09	значений 004, 005 предыдущего параметра <i>1</i> 77 Скорость передачи	000	300 бод (бит/с)
o09	значений 004, 005 предыдущего параметра #7 Скорость передачи данных в компьютер по	001	600 бод
o09	значений 004, 005 предыдущего параметра <i>1</i> 77 Скорость передачи	001 002	600 бод 1200 бод
o09	значений 004, 005 предыдущего параметра #7 Скорость передачи данных в компьютер по	001	600 бод
o09	значений 004, 005 предыдущего параметра #7 Скорость передачи данных в компьютер по	001 002 003	600 бод 1200 бод 2400 бод
o09	значений 004, 005 предыдущего параметра #7 Скорость передачи данных в компьютер по	001 002 003 004	600 бод 1200 бод 2400 бод 4800 бод
o09	значений 004, 005 предыдущего параметра #7 Скорость передачи данных в компьютер по	001 002 003 004 005	600 бод 1200 бод 2400 бод 4800 бод 9600 бод
o89	значений 004, 005 предыдущего параметра #7 Скорость передачи данных в компьютер по	001 002 003 004 005 006 007	600 бод 1200 бод 2400 бод 4800 бод 9600 бод 14400 бод
	значений 004, 005 предыдущего параметра <u>17</u> Скорость передачи данных в компьютер по последовательному порту RS-232	001 002 003 004 005 006 007	600 бод 1200 бод 2400 бод 4800 бод 9600 бод 14400 бод 19200 бод ич. программ Количество шагов 60 7
	значений 004, 005 предыдущего параметра #77 Скорость передачи данных в компьютер по последовательному порту RS-232 Тип разбиения памяти	001 002 003 004 005 006 007 Коли	600 бод 1200 бод 2400 бод 4800 бод 9600 бод 14400 бод 19200 бод ич. программ Количество шагов 60 7 30 16
	значений 004, 005 предыдущего параметра #77 Скорость передачи данных в компьютер по последовательному порту RS-232 Тип разбиения памяти	001 002 003 004 005 006 007 Коли 000 001 002	600 бод 1200 бод 2400 бод 4800 бод 9600 бод 14400 бод 19200 бод ич. программ Количество шагов 60 7 30 16 20 25
	значений 004, 005 предыдущего параметра #77 Скорость передачи данных в компьютер по последовательному порту RS-232 Тип разбиения памяти	001 002 003 004 005 006 007 Колг 000 001 002 003	600 бод 1200 бод 2400 бод 4800 бод 9600 бод 14400 бод 19200 бод ич. программ Количество шагов 60 7 30 16 20 25 15 34
	значений 004, 005 предыдущего параметра #77 Скорость передачи данных в компьютер по последовательному порту RS-232 Тип разбиения памяти	001 002 003 004 005 006 007 Коли 000 001 002 003 004	600 бод 1200 бод 2400 бод 4800 бод 9600 бод 14400 бод 19200 бод ич. программ Количество шагов 60 7 30 16 20 25 15 34 12 43
	значений 004, 005 предыдущего параметра #77 Скорость передачи данных в компьютер по последовательному порту RS-232 Тип разбиения памяти	001 002 003 004 005 006 007 Колг 000 001 002 003	600 бод 1200 бод 2400 бод 4800 бод 9600 бод 14400 бод 19200 бод ич. программ Количество шагов 60 7 30 16 20 25 15 34

 $T_{\rm откл.}-T_{\rm вкл.}-$ максимальная разница между значением температуры $T_{\rm сух.}$ ($T_{\rm влаж.},T_{\rm прод.}$) в момент отключения напряжения и между значением той же температуры в момент включения напряжения

Приложения

Приложения	
о / / Тип переключения 000	Автоматическое переключение
каналов индикации 001	Ручное переключение
Параметры 1-го (2-го) ПИД-регуляторов	
РП / (Р.П /) Постоянная времени дифференцирования	ı 000999 [c]
РП2 (Р.П2) Постоянная времени интегрирования	000999 [c]
РПЗ (Р.ПЗ) Полоса пропорциональности	000999 [град]
	099 [%]
РПЧ (Р.ПЧ) Период следования выходных импульсов	
PD5 (Р. D5) Зона действия интегральной составляющей	
РВБ (Р. ВБ) Ограничение максимальной мощности	00099 [%]
РСТ (Р.СТ)Тип исполнительного устройства	000 Коммутирует свои реле: одно как «нагрева тель», на выходе регулятора другое как «холо-
	дильник»
	001 Регулятор отключен
	002 Коммутирует свое реле как «нагреватель»
	003 Коммутирует свое реле как «холодильник»
	004 Управляет задвижкой по прямо пропорциональному закону
	005 Управляет задвижкой
	по обратно пропорциональному закону
	006 Управляет задвижкой
	по прямо пропорциональному закону
	с обратной связью по положению 007 Управляет задвижкой
	по обратно пропорциональному закону
	с обратной связью по положению
<i>РПВ</i> (<i>Р.ПВ</i>) Зона нечувствительности	000099 [град]
	099 [%]
▶ Уровень L3. Самонастройки 1-го (2-г	о) ПИД-регуляторов
<i>5LF</i> (<i>5LF</i> .)Входная величина, для которой	001 Температура <i>Т</i> _{прод.}
производится самонастройка	002 Вход <i>Т</i> ож
	003 Вход Т _{влаж.}
	$004 \Delta T = T_{\text{cyx.}} - T_{\text{npod.}}$
V 14 V	005 Относительная влажность Ч
▶ Уровень L4. Калибровки датчиков	
<i>ERL</i> Калибровки входов термодатчиков	001 Калибровка <i>Т_{сух.}</i> (и <i>Т</i> _{прод.})
и датчиков положения	002 Калибровка 7 _{влаж.}
	003 Калибровка входа КЗР1 при полностью закрытой задвижке 1
	004 Калибровка входа КЗР1 при
	полностью открытой задвижке 2
	005 Калибровка входа КЗР2 при
	полностью открытой задвижке 2
	006 Калибровка входа КЗР2 при
I	полностью закрытой задвижке 2

Устройство «влажного» термометра

E.1. Относительная влажность вычисляется в приборе по психрометрическому методу.

Психрометрический метод основан на измерении разности температур «сухого» и «влажного» («мокрого») термометров, температура последнего всегда ниже из-за испарения воды с поверхности фитиля. Чем суше воздух (ниже влажность), тем интенсивнее испаряется вода с поверхности фитиля, тем ниже температура «влажного» термометра.

На основе полуэмпирических психрометрических формул выведена общепринятая формула для расчета относительной влажности воздуха Ψ , %:

$$\Psi = \frac{E_{\rm M}}{E_{\rm c}} - \frac{A \cdot p \cdot (T_{\rm c} - T_{\rm M})}{E_{\rm c}},$$

где $E_{_{\rm M}}$ – максимально возможное парциальное давление водяного пара при температуре воздуха $T_{_{\rm M}}$, °C;

 $E_{\rm c}$ – максимально возможное парциальное давление водяного пара при температуре воздуха $T_{\rm c}$, °C;

р - атмосферное давление;

 $T_{\rm c}$ – температура «сухого» термометра, °C;

 $T_{\rm M}$ – температура «влажного» термометра, °C;

А – психрометрический коэффициент (психрометрическая постоянная).

- Е.2. Психрометрический коэффициент зависит от многих факторов, влияющих на тепло- и массообмен чувствительного элемента "влажного" термометра с окружающей средой:
 - размера и формы чувствительного элемента "влажного" термометра;
 - вида и состояния смачиваемого фитиля;
 - температуры смачивающей воды и теплопроводности фитиля;
 - влияния тепловой радиации.

Среди факторов внешнего воздействия наибольшее значение имеет скорость воздуха. Коэффициент A быстро убывает с ростом скорости воздушного потока и при скорости большей 2,5 м/сек приближается к постоянной величине, поэтому предпочтительнее использование вентиляторов со скоростью перемещения воздуха не менее 2,5 м/с.

Е.З. Увлажняющий фитиль должен обладать максимальной всасывающей способностью. Чаще всего фитиль изготавливается из тонких хлопчатобумажных неотбеленных тканей – марли, батиста, муслина и т.п. Для удаления аппретуры ткань предварительно можно прокипятить.

Фитиль изготовляется так: взять кусок марли (4...6 слоёв) такого размера, чтобы длина одной стороны куска покрывала датчик температуры желательно на всю его длину, а длина другой стороны куска была в 2 раза больше расстояния от датчика

Приложения

температуры до дна резервуара с водой. Сложить кусок пополам и сделать шов (или просто заметать) около места перегиба так, чтобы можно было просунуть в образовавшееся отверстие датчик. Желательно, чтобы марля плотно облегала датчик. Вместо марли можно использовать более плотные материалы, сложенные в 2...3 слоя.

Если нет возможности закрыть фитилем датчик на всю его длину, необходимо, чтобы конец датчика был закрыт на длину хотя бы 6 см с тем, чтобы чувствительный элемент, находящийся в самом конце гильзы, был закрыт фитилем.

Е.4. Крепить датчики температуры следует один над другим на расстоянии 50...100 мм друг от друга, перпендикулярно стенке резервуара (**рис. Е.1**), или параллельно (**рис. Е.2**). Под "влажным" термометром поместить резервуар с водой так, чтобы до поверхности воды было 60...100 мм.

Материал для изготовления резервуара может быть любым, длительно выдерживающим условия эксплуатации. Например, нержавеющая сталь, оцинкованное железо, термостойкая пластмасса, стекло или другой материал, который в конкретных условиях эксплуатации не будет разрушаться или выделять вредные вещества.

Увеличивать запас воды в резервуаре можно двумя способами:

- увеличивая глубину резервуара;
- увеличивая ширину резервуара.

В первом случае необходимо увеличивать длину фитиля, при этом появляется опасность его высыхания, во втором случае – увеличивается площадь испарения воды.

Для снижения площади испарения воды из резервуара можно рекомендовать резервуар с «бутылочным» горлом (**рис. Е.3**). В этом случае ширину резервуара можно увеличить в 3 – 4 раза (до 150...200 мм).

В случаях, когда требуется доливать в резервуар воду, не входя в рабочую камеру, вне камеры можно поставить дополнительный резервуар и соединить его с внутренним, что позволяет пополнять запас воды в резервуаре, не входя в камеру

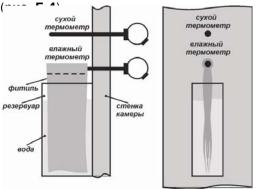


Рис. Е.1. Крепление датчиков температурыперпендикулярно стенке камеры

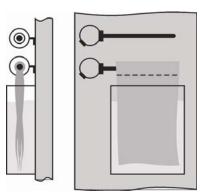


Рис. Е.2. Крепление датчиков температуры параллельно стенке камеры

Рис. Е.З. Форма резервуара с «бутылочным горлом»

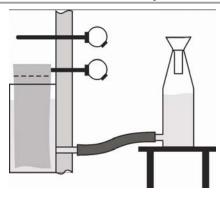


Рис. Е.4. Конструкция резервуара для воды, не требующая вхождения в камеру

Приложения

Приложение Ж (справочное)

Пример коррекции показаний температурного датчика

Ж.1. Коррекция «сдвиг характеристики»

Коррекция «сдвиг характеристики» производится в следующем порядке.

- Ж.1.1. Поместить в какую-либо ёмкость кусочки льда, полученного из дистиллированной (или кипячёной) воды и долить в емкость такую же воду из расчета 1/4 от объёма льда. Поместить в эту смесь датчик корректируемого канала ($T_{\text{сух}}$, $T_{\text{влаж}}$, $T_{\text{прод}}$), следя за тем, чтобы он не касался льда, и через 10...15 мин записать измеренное прибором значение температуры.
- Ж.1.2. Войти в уровень программирования L2 (см. разд. 4) и выбрать параметр $L : \{(Z_C : l, \text{ или } \exists c : l)\}$ в зависимости от того, к какому входу подключен датчик (см. *прил.* \mathcal{A}).
- Ж.1.3. Допустим, что при 0 °С прибор показывает +7,2 °С. Значит, надо установить значение параметра $l_{\mathcal{C}}$ $l_{\mathcal{C}}$ $l_{\mathcal{C}}$ $l_{\mathcal{C}}$ $l_{\mathcal{C}}$ $l_{\mathcal{C}}$ де $l_{\mathcal{C}}$ в параметре $l_{\mathcal{C}}$ $l_{\mathcal{C}}$ $l_{\mathcal{C}}$ надо установить знак «минус». т.е. значение «001».

Таким образом, вся характеристика сдвинется вниз, до пересечения с 0°C.

Если, допустим, прибор показывает -5 °C, то надо установить значение параметра $\frac{1}{6} \frac{1}{6} \frac$

Ж.1.4. После завершения коррекции «сдвиг» характеристики выйти из уровня L2 режима ПРОГРАММИРОВАНИЕ в режим ОСТАНОВ. На индикаторе «ПАРАМЕТР» вместо «+7,2» (или «-5») будут индицироваться нули.

Ж.2. Коррекция «наклон характеристики»

Коррекция «наклон характеристики» производится только после коррекции «сдвиг характеристики» в следующем порядке.

- Ж.2.1. Взять емкость для горячей воды (желательно термос), образцовый термометр. Осторожно влить в ёмкость горячую воду (желательно кипяток), вставить туда образцовый термометр и датчик.
- Ж.2.2. Спустя 3...4 мин записать показания образцового термометра и измеренное прибором значение температуры.

Если разницы в показаниях нет (или она несущественна), то коррекцию производить не надо.

- Ж.2.3. Если разница показаний велика, необходимо произвести коррекцию. Сначала надо определить разность между показаниями, разделить ее на измеренное прибором значение температуры и умножить на сто. Полученный результат имеет размерность процентов.

X.2.6. Выйти из режима ПРОГРАММИРОВАНИЕ (см. разд. 4) и сверить измеренное прибором значение температуры и показания образцового термометра. Если они совпадают с требуемой по условиям технологического процесса точностью, то коррекция закончена.

Приложения

Приложение 3 (рекомендуемое)

Примеры программирования прибора МПР51-Щ4

ВНИМАНИЕ! В приведенных ниже примерах последовательность заполнения таблиц соответствует общему списку параметров (см. *прил.* Д), при переносе значений параметров из таблиц в память прибора целесообразно придерживаться порядка действий, изложенного в разд. 6.

Пример 3.1. Программа управления температурным режимом в сушилке.

3.1.1. Режимы технологического процесса

Требуется непрерывное поддержание температуры +50 °C с точностью ±1 °C.

3.1.2. Режим работы прибора

Поскольку процесс непрерывный, программа управления имеет циклический характер (см. п. 3.2.6.1, **рис.27**). Цикл повторяется до нажатия кнопки СТОП.

Поскольку будет регулироваться один параметр (температура), работать должен только один регулятор, который используется не как ПИД-регулятор, а как компаратор.

Датчик температуры должен подключаться ко входу $T_{\text{сух}}$, ко входам $T_{\text{влаж}}$ и $T_{\text{прод}}$ для имитации подключения датчиков температуры подключаются резисторы сопротивлением 47...91 Ом или 68...120 Ом (в зависимости от модификации датчика на входе $T_{\text{сух}}$ – сопротивлением 50 или 100 Ом, соответственно).

Цепь включения нагревателя должна коммутироваться с помощью реле P2. Компараторы не используются.

3.1.3. Программирование прибора

3.1.3.1. Программируемые параметры, устанавливаемые на уровне L1 (табл. 3.1, 3.2).

Параметры программ:

☐ /= 001 – один шаг;

□2 = 001 – после окончания шага происходит возврат в его начало.

Таблица 3.1

Параметры компараторов

Параметр	Компаратор	Компаратор	Компаратор	Компаратор	Комментарии
' '	Γ'I '	[2 .	ΕĠ	ĽΥ ·	·
	- '			'	
c0 (-	_	_	_	
c02	000	000	000	000	Выходы
					компараторов
					отключены
c03	-	_	_	_	
<i>∟</i>	-	_	_	_	
c05	-	_	_	_	
c05	_	_	_	_	
∠07	-	_	_	_	
c08	-	_	_	_	
<i>∟0</i> 9	_	_	_	_	
c 10	-	-	_	_	

Таблица 3.2

Параметры шагов (шага)

Параметр	Значение	Комментарии
	_	
<i>-</i> □2	_	
~ □3	_	
∩∐Y	_	
<i>-</i> 05	_	
-05	_	
∩ []7	_	
-08	_	
4 0 ℓ	001	Задается длительность шага.
402	_	
403	_	
Y04	000	
<i>5</i> 05	0.01	Можно задать любое значение, не равное 0.
E0 (002	
E02	050	Устанавливается заданное
		значение температуры (уставка).
E03	0.00	, , ,
EO4	000	
<i>E0</i> 5	000	

Приложения

3.1.3.2. Программируемые параметры, устанавливаемые на уровне L2 (табл. 3.3).

Таблица 3.3

Общие параметры и параметры регуляторов

Параметр	Значение	Комментарии
oO (_	Значение параметра задается
		в зависимости от типа применяемого датчика.
<i>₀</i> @2	001	
o <u>03</u>	000	
o <u>0</u> Ч	001	
o <u>05</u>	_	
005	-	
-07	001	
-OB	_	
o03	_	
o 0	_	
PO 1	000	
PD2	000	
P03	000	
PD4	_	
P05	000	
P05	000	
<i>P</i> 07	002	1-й регулятор управляет ИУ
		типа «нагреватель».
P08	00.5	Определяет точность регулирования (±1 °C).
P.O (_	
P.D2	_	
P.03	_	
P.D4	_	
P.05	_	
P.05	_	
P.07 P.08	001	2-й регулятор отключен.

Примечания.

- 1. ИУ исполнительное устройство.
- 2. Прочерки в таблицах означают любое значение; обычно вместо прочерков записывают нули (или наименьшее значение параметра).

Пример 3.2. Программа непрерывного поддержания постоянных климатических условий в помещении (камере для хранения продуктов)

3.2.1. Режимы технологического процесса

Необходимо непрерывно поддерживать температуру +5 °C \pm 1 °C и относительную влажность 65 ± 3 %.

Установка для поддержания температуры имеет подогреватель (ТЭН) и холодильный аппарат.

Установка для поддержания влажности имеет осущитель и увлажнитель.

3.2.2. Режим работы прибора

Программа управления имеет циклический характер (см. п. 3.2.6, **рис. 27**) и продолжается до нажатия кнопки стоп.

1-й регулятор будет регулировать температуру с помощью реле P1 и реле P2; 2-й регулятор будет регулировать влажность с помощью реле P3 и реле P4.

Для обоих регуляторов для простоты принимается релейный закон регулирования.

Датчики температуры подключаются ко входу $T_{\rm сух}$ и $T_{\rm влаж}$, ко входу $T_{\rm прод}$ для имитации подключения датчика температуры подключается резистор сопротивлением 47...91 Ом или 68...120 Ом (в зависимости от типа датчика на входе $T_{\rm cyx}$ – 50 или 100 Ом, соответственно).

Цепь включения холодильника коммутируется с помощью реле Р1;

цепь включения нагревателя - реле Р2;

цепь включения осушителя - реле РЗ;

цепь включения увлажнителя - реле Р4.

Компараторы не используются.

3.2.3. Программирование прибора

3.2.3.1. Программируемые параметры, устанавливаемые на уровне L1 (табл. 3.4, 3.5). Параметры программ:

H□ *l* = 001 – один шаг;

НВ2 = 001 – после окончания шага происходит возврат в его начало.

Приложения

Параметры компараторов

Таблица 3.4

	параметры компараторов								
Параметр	Компаратор	Компаратор	Компаратор	Компаратор	Комментарии				
,	ĽΙ	[2	[3	ĽΫ					
∟ □ /	_	_	_	-					
c02	000	000	000	000	Выходы				
					компараторов				
					отключены				
c03	_	_	_	-					
c□Y	_	_	_	_					
c05	_	_	_	-					
c05	_	_	_	-					
∟ 07	_	_	_	_					
c08	_	_	_	-					
c09	_	_	_	_					
c 10	_	_	_	_					

Таблица 3.5

Параметры шагов (шага)

Параметры шагов (шага)					
Параметр	Значение	Комментарии			
∩□ (_				
n02	_				
-03	_				
n <u>0</u> 4	_				
<i>-</i> 05	_				
-05	_				
-07	_				
<i>-</i> 08	_				
YD (001	Переход к следующему шагу задается			
		по времени, а не по температуре.			
Y02	_				
YO3	_				
<u>40</u> 4	000				
YO5	0.01	Можно задать любое значение, не равное 0.			
E0 (002	На входе 1-го регулятора –			
		значение T_{cvx} (в камере).			
E02	005	Устанавливается заданное			
		значение температуры (уставка).			
E03	00.0				
EO4	000				
E05	000				
E0 (005	На входе 2-го регулятора –			
		значение относительной влажности.			
E02	065	Устанавливается заданное			
		значение относительной влажности (уставка).			
E03	00.0				
E04	000				
E05	000				

3.2.3.2. Программируемые параметры, устанавливаемые на уровне L2 (табл. 3.6).

Таблица 3.6

Общие параметры и параметры регуляторов

Параметр	Значение	Комментарии
o∏ (_	Значение параметра задается
		в зависимости от типа применяемого датчика.
o02	001	
o03	001	Нижний индикатор показывает
		значение влажности.
<i>o</i> £4	001	
₀05	_	
о#Б	_	
oB7	001	
o08	_	
o09	_	
o 🛭	_	
P0 (000	
P02	000	
P03	000	
<i>P</i> 04	_	
P05	000	
<i>P0</i> 5	000	
P07	000	1-й регулятор управляет ИУ
		типа «нагреватель – холодильник».
P08	00.5	Определяет точность регулирования (±1 °C).
P.O I	000	
P.O2	000	
P.03	000	
P.DY	_	
P.05	000	
P.05	000	
P.D7	000	2-й регулятор управляет ИУ
		типа «нагреватель – холодильник».
P.08	1,5	Определяет точность регулирования (±3 °C).
I	1	

Примечания.

- 1. ИУ исполнительное устройство.
- 2. Прочерки в таблицах означают любое значение; обычно вместо прочерков записывают нули (или наименьшее значение параметра).

Приложения

Пример 3.3. Программа управления температурно-влажностным режимом варочного шкафа

3.3.1. Режимы технологического процесса

Требуется осуществить процесс получения полукопченой колбасы из сырья определенного состава в 4 этапа:

- подсушка (температура 55 °C и влажность 20 % в камере в течение 35 мин);
- обжарка (температура 75 °C и влажность 30 % в течение 35 мин);
- копчение (температура 80 °C и влажность 50...70 % в камере до достижения емпературы 63 °C внутри батона, при подаче в камеру дыма);
- варка (температура 87 °C и влажность 100 % в камере до достижения температуры 73 °C внутри батона, без подачи дыма).

Точность поддержания температуры ±1 °C, точность подержания влажности ±4 %.

3.3.2. Режим работы прибора

Программа управления должна состоять из 4-х шагов.

1-й регулятор должен регулировать температуру с помощью реле Р2;

2-й регулятор должен регулировать влажность с помощью реле P3 и реле P4, управляющими задвижкой подачи пара в камеру.

Датчики температуры подключаются ко входам $T_{\text{сух}}, T_{\text{влаж}}$ и $T_{\text{прод}}$; на вход датчика $T_{\text{влаж}}$ одевается марлевый чехол, конец которого опускается в ванночку с водой, а датчик $T_{\text{прод}}$ определяет температуру продукта.

Цепь включения нагревателя (ТЭНов) коммутируется с помощью реле Р2.

Подача пара регулируется с помощью:

- реле РЗ, которое открывает задвижку;
- реле Р4, которое закрывает задвижку.

Удаление пара осуществляется с постоянной скоростью при помощи непрерывно работающей вытяжки.

Компараторы не используются.

Включением (выключением) дымогенератора управляет транзисторный ключ №1.

3.3.3. Программирование прибора

3.3.3.1. Для удобства программирования условия технологического процесса необходимо представить в табличном виде (табл. 3.7).

Таблица 3.7

Стадии процесса получения полукопченой колбасы

l	Номер	Условие перехода к	Значение	Уставка $T_{\text{сух}}$ в	Уставка	Работа
l	шага	следующему шагу	условия	камере	влажности	дымоге-
ı			перехода		в камере	нератора
l	1	по времени	35 мин	55 °C	20 %	отключен
ı	2	по времени	35 мин	75 °C	30 %	отключен
l	3	по $T_{\text{прод}}$	63 °C	80 °C	60 %	включен
l	4	по $T_{\text{прод}}$	73 °C	87 °C	100 %	отключен

3.3.3.2.Программируемые параметры, устанавливаемые в уровне L1 (см. табл. 3.8, 3.9, 3.10, 3.11, 3.12).

Параметры программ:

 $H\Box I = 004 - четыре шага;$

Н□2=000 – циклов нет, после окончания 4-го шага прибор переходит в режим ОСТАНОВ.

Таблица 3.8

Параметры компараторов

	параметры компараторов							
Параметр	Компаратор	Компаратор	Компаратор	Компаратор	Комментарии			
	ΕΙ	[2	[3	[4				
c0 I	_	_	_	_	Выходы			
					компараторов			
					отключены			
c02	000	000	000	000				
c03	_	_	_	_				
c□Y	_	_	_	_				
c05	_	_	_	_				
c05	_	_	_	_				
∟ 207	_	_	_	_				
<i>∟</i> 08	_	_	_	_				
<i>∟09</i>	_	_	_	_				
c 10	_	_	_	_				

Таблица 3.9

Параметры первого шага программы

Параметры первого шага программы					
Параметр	Значение	Комментарии			
∩[] [000	Сигнал на включение дымогенератора не подан.			
<i>∩</i> 02	-				
<i>-</i> 03	-				
n∐Y	-				
-05	-				
-05	-				
∩07	-				
<i>∩</i> 08	-				
Y0 (001	Переход к следующему шагу задается по			
		по времени, а не по температуре.			
<i>402</i>	-				
YO3	-				
<i>40</i> 4	000				
<i>405</i>	0.35	Уставка времени подсушки – 35 мин.			
E0 (002	На входе 1-го регулятора –			
		значение $T_{\text{сух}}$ (камеры).			
E02	055	Устанавливается заданное			
		значение температуры (уставка) в камере.			
E03	00.0				
E04	000				
E05	000				
E.O 1	005	На входе 2-го регулятора –			
		значение относительной влажности.			
E.02	020	Устанавливается заданное значение			
F 07		относительной влажности (уставка) в камере.			
E.03	00.0				
E.04	000				
E.05	000				

Приложения

Таблица 3.10

Параметры второго шага программы

Попомото	20000000	Коммонтории
Параметр лП /	Значение 000	Комментарии
	000	Сигнал на включение дымогенератора
רח		не подан.
<u>~02</u>	_	
∩ <u>03</u>	_	
n <u>0</u> 4	_	
<i>~</i> 05	_	
<i>-</i> 05	_	
<i>^</i> _7	_	
<i>∩</i> 08	_	
YO (001	Переход к следующему шагу задается
		по времени, а не по температуре.
<i>402</i>	_	
Y 03	_	
<i>40</i> 4	000	
<i>Y0</i> 5	0.35	Уставка времени обжарки – 35 мин.
E0 (002	На входе 1-го регулятора –
		значение $T_{\text{\tiny cvx}}$ (камеры).
E02	075	Устанавливается заданное
		значение температуры (уставка) в камере.
E03	0.00	
EO4	000	
<i>E0</i> 5	000	
E.O 1	005	На входе 2-го регулятора –
		значение относительной влажности.
E.02	030	Устанавливается заданное значение
		относительной влажности (уставка) в камере.
E.03	00.0	
E.OY	000	
E.05	000	

Таблица 3.11

Параметры третьего шага программы

		· ·
Параметр	Значение	Комментарии
∩[] {	001	Подается непрерывный сигнал
		на включение дымогенератора.
<i>-</i> 02	_	
~03	_	
n <u>0</u> Y	_	
<i>-</i> 05	_	
-05	_	
_07	_	
-08	_	
Y0 (000	Переход к следующему шагу задается
		по температуре, а не по времени.
Y02	001	Переход к следующему шагу происходит
		при превышении $T_{ m npog}$.
YO3	063	Уставка $T_{\text{прод}}$ для перехода
		на следующий шаг.
Y04	_	
4 05	_	
E0 (002	На входе 1-го регулятора –
		значение T_{cvx} (камеры).
E02	080	Устанавливается заданное
		значение температуры (уставка) в камере.
E03	00.0	
EOY	000	
E05	000	
E.O I	005	На входе 2-го регулятора – значение
		относительной влажности в камере.
E.02	060	Устанавливается заданное значение
		влажности (уставка) в камере.
E.03	00.0	
E.DY	000	
E.05	000	
	1	

Приложения

Таблица 3.12

Параметры четвертого шага программы

Параметр	Значение	Комментарии
∩D (000	Дымогенератор выключен.
n02	_	
~03	_	
n¤Y	_	
<i>-</i> 05	_	
-05	_	
∩ 87	_	
∩¤B	_	
YO !	000	Переход к следующему шагу задается
		по температуре, а не по времени.
YO2	001	Переход к следующему шагу происходит
		при превышении $T_{\text{прод}}$.
3 03	073	Уставка $T_{\text{прод}}$ для перехода
		к следующему шагу.
30 4	_	
	_	
ED 1	002	На входе 1-го регулятора –
		значение $T_{\text{сух}}$ (камеры).
E02	080	Устанавливается заданное
		значение температуры (уставка) в камере.
E03	0.00	
EOY	000	
E05	000	
E.O I	005	На входе 2-го регулятора – значение
		относительной влажности в камере.
E.O2	99	Устанавливается заданное значение
		влажности (уставка) в камере.
E.03	00.0	
E.04	000	
	000	

3.3.3.3. Программируемые параметры, устанавливаемые на уровне *L2* (табл. 3.13).

Таблица 3.13

Общие параметры и параметры регуляторов

Параметр	Значение	Комментарии
₀0 (Значение параметра задается
		в зависимости от типа применяемого датчика.
o02	001	
о03	001	Нижний индикатор показывает
		значение влажности.
<i>₀</i> []Y	001	
oO5	_	
οΩ5	_	
<i>₀</i> Д7	001	
οΩ8	_	
o09	_	
o 🛭	_	
P0 !	000	
P02	000	
P03	000	
PDY	_	
P05	000	
P05	000	
PD7	002	1-й регулятор управляет ИУ* типа «нагреватель»
P08	00.5	Определяет точность регулирования (±1 °C).
P.O I	000	
P.O2	000	
P.03	000	
P.04	_	
P.05	000	
P.05	000	
P.07	004	2-й регулятор управляет ИУ
		типа «нагреватель – холодильник».
P.08	2,5	Определяет точность регулирования (±4 °C).

Примечания.

- 1. ИУ исполнительное устройство.
- 2. Прочерки в таблицах означают любое значение; обычно вместо прочерков записывают нули (или наименьшее значение параметра).
- 3. В приводимом примере вместо ПИД-регулирования используется двухпозиционное (релейное) регулирование; это сделано для упрощения примера.

Приложения

Пример 3.4. Программа управления температрно-влажностным режимом сушки древесины

3.4.1. Режимы технологического процесса

Сушка дубовых досок толщиною 20 мм, осуществляемая в шесть этапов. Параметры процесса сушки указаны в табл. 3.14.

Таблица 3.14

Параметры процесса сушки древесины

Этапы технологического процесса	$T_{\text{камеры}}$ $(T_{\text{сух}})$, °C	т _{влаж} , °С	<i>ΔT</i> , °C	ψ, °C	Время, ч
Начальный прогрев	80	79	0,51,0	98	4
1-я ступень сушки	75	70	5	80	27
2-я ступень сушки	80	71	9	66	22
3-я ступень сушки	100	71	29	31	18
Конечная влаготеплообработка	100	99	0,51,0	99	2

Нагрев воздуха в камере осуществляется с помощью ТЭНов.

Влажность в камере увеличивается путем подачи в камеру пара, снижается путем открытия заслонки вытяжного вентилятора.

3.4.2. Режим работы прибора

Программа управления должна иметь 5 шагов.

Температура в камере должна поддерживаться 1-м регулятором с помощью реле P2, влажность в камере должна поддерживаться 2-м регулятором; поскольку задается разность температур «влажного» и «сухого» термометров, то 2-й регулятор должен поддерживать температуру «влажного» термометра с помощью реле P3 и P4.

Длительность каждого шага задается по времени.

Датчики температуры подключаются ко входу $T_{\rm сух}$ и $T_{\rm влаж}$, на вход $T_{\rm прод}$ для имитации подключения датчиков температуры подключается резистор сопротивлением 47...91 Ом или 68...120 Ом (в зависимости от типа датчика на входе $T_{\rm cvx}$ – сопротивлением 50 или 100 Ом, соответственно).

Цепь включения нагревателя камеры (ТЭНов) коммутируется реле Р2;

Реле Р3 открывает клапан, через который подается пар в камеру;

Реле Р4 открывает заслонку на вытяжном воздуховоде.

Компараторы не используются.

3.4.3. Программирование прибора

3.4.3.1. Параметры, устанавливаемые на уровне L1 (табл. 3.15, 3.16, 3.17, 3.18, 3.19).

Параметры программ:

H□ /= 005 – пять шагов:

H= 000 − циклов нет, после окончания 5-го шага прибор переходит в режим ОСТАНОВ.

Таблица 3.15

Параметры компараторов

rapamorps: Romitaparopos								
Параметр	Компаратор	Компаратор	Компаратор	Компаратор	Комментарии			
	[]	[2	[3	[4				
∟ □ (_	_	_	_				
c02	000	000	000	000	Выходы			
					компараторов			
					отключены			
c03	_	_	_	_				
<i>∟</i>	_	_	_	_				
<i>∟</i> 05	_	_	_	_				
<i>∟</i> 05	_	_	_	_				
<i>∟</i> 07	_	_	_	_				
c08	_	_	_	_				
<i>∟</i> 09	_	_	_	_				
c 10	_	_	_	_				

Таблица 3.16

Параметры первого шага программы

Параметры первого шага программы						
Параметр	Значение	Комментарии				
∩ □ 1	_					
<i>~</i> 02	_					
<i>-</i> 03	_					
n <u>∏</u> Y	_					
<i>-</i> 05	_					
-05	_					
∩ 07	_					
<i>-</i> 08	_					
YD (001	Переход к следующему шагу задается				
		по времени, а не по температуре.				
Y02	_					
YO3	_					
YDY	004	Уставка времени начального прогрева (4 часа).				
<i>Y0</i> 5	0.00					
ED 1	002	На входе 1-го регулятора –				
		значение $T_{\scriptscriptstyle ext{cvx}}$ (камеры).				
E02	080	Устанавливается заданное				
		значение температуры (уставка) в камере.				
E03	0.00					
ED4	000					
E05	000					
E.0 I	003	На входе 2-го регулятора –				
		– значение $T_{_{\mathrm{влаж}}}$.				
E.02	079	Устанавливается заданное значение				
		<i>Т</i> _{влаж} (уставка).				
E.03	00.0					
E.04	000					
E.05	000					

Приложения

Таблица 3.17

Параметры второго шага программы

Параметр	Значение	Комментарии
n∏ /	-	
	_	
	_	
∩∐Y	_	
<u>~</u> 05	_	
<i>-</i> 05	_	
_07	_	
-08	_	
<u> </u>	001	Переход к следующему шагу задается
		по времени, а не по температуре.
<u> </u>	_	
<u> 403</u>	_	
<u> </u>	027	Уставка времени 1-й ступени сушки (27 часов).
<u> </u>	0.00	
E0 (002	На входе 1-го регулятора –
		значение T_{cvx} (в камере).
E02	075	Устанавливается заданное
		значение температуры (уставка) в камере.
E03	0.00	
EO4	000	
E05	000	
E.O I	003	На входе 2-го регулятора – – значение $T_{_{\rm влаж}}$.
E.O2	070	Устанавливается заданное значение $T_{\text{влаж}}$ (уставка).
E.O3	00.0	зпачение т _{влаж} (уставка).
E.04	000	
E.05	000	

80

Таблица 3.18

Параметры третьего шага программы

Параметр	Значение	Комментарии
∩[] [_	
n02	_	
~83	_	
n∐Y	_	
<i>-</i> 05	_	
-05	_	
-07	_	
-08	_	
Y0 (001	Переход к следующему шагу задается
		по времени.
<i>402</i>	_	·
403	_	
4 <u>0</u> 4	022	Уставка времени 2-й ступени
		сушки (22 часа).
<i>4</i> 05	0.00	
E0 (002	На входе 1-го регулятора –
		значение $T_{_{\text{cvx}}}$ (в камере).
E02	080	Устанавливается заданное
		значение температуры (уставка) в камере
E03	00.0	
E04	000	
E05	000	
E.O (003	На входе 2-го регулятора –
		значение $T_{_{\rm влаж}}$.
E.O2	071	Устанавливается заданное
		значение $T_{_{_{\rm влаж}}}$ (уставка).
E.03	00.0	влаж 😯
E.04	000	
E.05	000	

Приложения

Таблица 3.19

Параметры четвертого шага программы

Параметр	Значение	Комментарии
_01	_	
	_	
~03	_	
││	_	
	_	
	_	
^87	_	
	_	
<u> </u>	001	Переход к следующему шагу задается по времени.
YOZ	_	'
<u>403</u>	_	
<u> </u>	018	Уставка времени 3-й ступени сушки (18 часов).
<i>9</i> 05	0.00	5,=(10.1000=).
	002	На входе 1-го регулятора –
		значение $T_{\text{сух}}$ (в камере).
	100	Устанавливается заданное
		значение температуры (уставка) в камере.
	0.00	
<i>E0</i> 4	000	
	000	
E.O !	003	На входе 2-го регулятора –
		значение Т _{влаж} .
E.O2	71	Устанавливается заданное
	00.0	значение $T_{_{влаж}}$ (уставка).
E.O3	00.0	
E.DY	000	
E.OS	000	

Таблица 3.20

Параметры пятого шага программы

Параметр	Значение	Комментарии
-01	_	·
<i>~</i> @2	_	
~ @3	_	
∩ <u>□</u> Y	_	
<i>-</i> 05	_	
-05	_	
∩ □7	_	
<i>-</i> Ω8	_	
3D I	001	Переход к следующему шагу задается
		по времени.
3 <u>02</u>	_	
<i>403</i>	_	
3 <u>0</u> 4	002	Уставка времени для конечной
		влаготеплообработки (2 часа).
<i>30</i> 5	0.00	
ED I	002	На входе 1-го регулятора –
		– значение $T_{_{\mathrm{cvx}}}$ (в камере).
E02	100	Устанавливается заданное
		значение температуры (уставка) в камере.
E03	00.0	
EDY	000	
E05	000	
E.O I	003	На входе 2-го регулятора –
		– значение $T_{_{\mathrm{влаж}}}$.
E.02	99	Устанавливается заданное
		значение $T_{_{\rm влаж}}$ (уставка).
E.03	00.0	рлаж
E.OY	000	
E.05	000	

Примечание. В случае, когда влажность древесины в процессе сушки периодически контролируется пользователем, при необходимости пользователь может или раньше закончить какой-либо шаг (перейдя "вручную" на следующий шаг), или увеличить время шага, запустив его сначала (также "вручную"). Последовательность действий при выборе шага "вручную" приведена в пп. 8.2.6. — 8.2.9.

Приложения

3.4.3.2. Параметры, устанавливаемые на уровне L2 (табл. 3.21).

Таблица 3.21

Общие параметры и параметры регуляторов

Параметр	Значение	Комментарии
οΩ (Значение параметра задается
		в зависимости от типа применяемого датчика.
оД2	001	
o03	001	Нижний индикатор показывает
		значение влажности.
o£Y	001	
o05	_	
οΩ5	_	
<i>₀□</i> 7	001	
o08	_	
o09	_	
o 🛭	_	
P0 !	000	
P02	000	
P03	015	Полоса пропорциональности
		1-го регулятора (T_{cvx}).
PDY	020	Период следования управляющих
		импульсов 1-го регулятора.
P05	000	
P05	000	
P07	002	1-й регулятор управляет ИУ* типа «нагреватель».
P08	00.1	Определяет точность
		регулирования <i>Т</i> _{с∨х} (±1 °C).
P.O I	000	cyx (,
P.02	000	
P.03	020	Полоса пропорциональности
		2-го регулятора ($T_{_{\rm влаж}}$).
P.04	050	Период следования управляющих
		импульсов 2-го регулятора.
P.05	000	
P.05	000	
P.07	000	2-й регулятор управляет ИУ
		типа «нагреватель – холодильник».
P.08	00.1	Определяет точность регулирования $T_{\text{влаж}}$.
		влаж.

Примечания.

- 1. ИУ исполнительное устройство.
- 2. Прочерки в таблицах означают любое значение; обычно вместо прочерков записывают нули (или наименьшее значение параметра).
- 3. В приводимом примере используется П-регулирование (устанавливаются значения полосы пропорциональности, не равные нулю); это сделано для упрощения примера.

Приложение И (рекомендуемое)

Настройка ПИД-регулятора

Настройка ПИД-регулятора на объекте – трудоемкая задача, требующая специальных знаний. В приборе предусмотрена автоматическая настройка (автонастройка), а также возможность настроить ПИД-регулятор вручную.

И.1. Автонастройка

И.1.1. Для начальной (грубой) настройки ПИД-регулятора используется режим АВТОНАСТРОЙКА, предназначенный для автоматического определения оптимальных значений коэффициентов ПИД-регулятора при работе конкретной системы. Автонастройку рекомендуется проводить при пуске и наладке системы, а также при значительном изменении характеристик объекта.

ВНИМАНИЕ! Автонастройка в приборе МПР51 производится только для объектов типа «нагреватель» или «холодильник», для объектов типа «задвижка» или «нагреватель – холодильник» автонастройка не предусмотрена.

Режим автонастройки 1-го (2-го) регуляторов реализуется с помощью программируемых параметров SLF(SLF.), значения которых зависят от вида входной величины, для которой производится автонастройка (см. *прил.* Д).

И.1.2. Перед проведением процедуры автонастройки 1-го или (2-го) регулятора к соответствующему входу прибора должен быть подключен(ы) датчик(и), а к выходному (выходным) реле регулятора – исполнительное устройство. При этом образуется контур регулирования, составленный из объекта управления (например, печи, или климатической камеры), датчика(ов) температуры, прибора (с выбранным регулятором), исполнительного устройства (например, нагревателя).

Автонастройка производится методом единичного скачка. Перед началом процедуры сигнал на выходе регулятора отсутствует. При запуске процедуры автонастройки регулятор выдает на свой выход максимальный сигнал и одновременно отслеживает сигнал на входе. Как только скорость изменения регулируемого параметра начнет уменьшаться, процесс автонастройки заканчивается, прибор прекращает выдавать выходной сигнал и вычисляет коэффициенты ПИД-регулирования: постоянную времени дифференцирования, постоянную времени интегрирования, полосу пропорциональности, а также период следования управляющих импульсов. После этого пользователь может занести вычисленные значения коэффициентов в память прибора, в уровень L2. Время автонастройки зависит от свойств объекта (его инерционности) и может меняться от секунд до десятков минут и более.

- И.1.3. Для проведения процедуры автонастройки нужно:
- войти в уровень L3 режима ПРОГРАММИРОВАНИЕ, см. разд. 4, пп. 4.2.3.2;
- в зависимости от вида входной величины, для которой производится автонастройка, установить значение параметра (.) для 1-го (2-го) регулятора (см. прил. Д);
- нажав кнопку [пол.], запустить процедуру автонастройки, при этом на индикаторе «ПАРАМЕТР» появятся мигающие прочерки; по окончании процедуры автонастройки

Приложения

на индикаторе «ПАРАМЕТР» появится сообщение «rdУ», указывающее на завершение вычисления ПИД-коэффициентов;

- нажав кнопку [мог.], записать вычисленные ПИД-коэффициенты в память прибора:
- если вместо кнопки [not.] нажать кнопку [not.], то внесение в память новых значений ПИД-коэффициентов не произойдет.

И.2. Ручная настройка ПИД-регулятора

- И.2.1. Для более высокого качества регулирования требуется подбор (уточнение) значений ПИД-коэффициентов вручную. Для этого требуется многократный запуск технологического процесса: для каждого нового значения одного из 3-х коэффициентов ПИД-регулятора (и, в некоторых случаях, для периода следования управляющих импульсов).
- И.2.2. Если время установления нового значения на выходе объекта управления составляет десятки секунд – единицы минут, то можно попробовать сразу подобрать коэффициенты ПИД-регулятора.

Время установления – это отрезок времени Δt , который требуется для того, чтобы после входного воздействия ΔP на объект регулирования его выходной параметр (например, температура) изменился на ΔT (°C) и установилось новое значение ΔT (°C).

- V.2.2.1. Для подбора коэффициентов необходимо задать значения программируемых параметров PII = 000, PIII = 000, PIII = 000 (см. прил. Д), выставить уставку входного параметра и запустить программу, составленную пользователем на этапе подготовки прибора к работе (см. разд. 6). Прибор будет поддерживать входную величину (например, температуру) возле уставки с большими колебаниями.
- И. 2.2.2. Постепенно увеличивая значения параметра ₱☐ (т.е. осуществляя Пзакон регулирования) надо добиться минимальных колебаний. Если таким образом удается достичь приемлемого регулирования, то настройку регулятора можно считать оконченной.
- И.2.2.3. Если при минимальных колебаниях входная величина не дотягивает до уставки, либо не удается избавиться от колебаний входной величины, то следует ввести интегральную составляющую (реализуя таким образом ПИ-закон регулирования). Для этого надо установить большое значение параметра РП₂, например, 500 или 800. Постепенно уменьшая значение РП₂, необходимо добиться минимального недотягивания входной величины до уставки при максимальном значении РП₂. Если удается получить удовлетворительные результаты регулирования, то настройку регулятора можно считать оконченной.
- И.2.2.4. Если после введения интегральной составляющей в выходной сигнал реакция регулятора сильно замедлилась, то нужно ввести дифференциальную составляющую (реализуя ПИД-закон регулирования). Для этого надо постепенно увеличивать значение параметра РО І.

Если в результате регулирование удовлетворительное, то регулятор считается настроенным.

И.2.2.5. Если не удается достичь удовлетворительных результатов, то следует повторить настройку регулятора путем изменения значений параметров PDZ и PDZ, как описывалось выше, (см. пп. И.2.2.2, И.2.2.3).

ВНИМАНИЕ! Изменять значения программируемых парметров следует на фоне режима РАБОТА, дождавшись, когда значение регулируемого параметра установится.

Лист регистрации изменений

№ измене-	Номера листов (стр.)			Всего листов	Дата	Подпись	
ния	измен.	заменен.	НОВЫХ	аннулир.	(стр.)	внесения	
1	2	3	4	5	6	7	8
				-			
				-			